
___LOAN DOCUMENT
PHOTOGRAPH THIS SHEET

LEVEL INVENTORY

z
- 0

__ DOCUMENT IDENTI]FICATION

1= A
cl N

D
DISTRIBUTION STATEMENT L

NTIS GRAM E
DTIC TRAC 0
UNANNOUNCED [l

JUSTIFICATION

I
BY

DISTRIBUTION/ T
AVAILABILITY CODES

DISTRIBULON AVAfLABLITY AND/OR SPECIAL H
DATE ACCESSIONED

A
DISTRIBUTION STAMP

R
E

DATE RETURN"ED

91-06506

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

DTIC ", 70A r)(xMFT PRltOCESSING SiiETi,.U 11)L0011

OrADX 13 EXAUME
iLOAN DOCUMENT

WL-TR-91-8025

AD-A239 000

PRODUCT DEFINITION DATA INTERFACE (PDDI)

Access Software User's Manual

McDonnell Aircraft Company
McDonnell Douglas Corporation
P. 0. Box 516
St. Louis, MO 63166

July 1991

Final report

Approved for public release; distribution is unlimtited.

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

/

ALAN R. WINN DATE
Project Manager

FOR THE COMMANDER:

BRUCE A. RASMUSSEN, Chief DATE
Integration Technology Division
Manufacturing Technology Directorate

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/MTIB , WPAFB, OH 45433-6533 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTR!BUTION IAVAILABILITY OF REPORT
2 _______________________________________ _ SAPPROVED FOR PUBLIC RELEASE
Zb. DEC.ASSIFICATION / DOWNGRAA~ING SCHEDULE DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGAIIZATION REPORT NUMBER(S)

WL-TR-91-8025

64. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(Nppca ke) Manufacturing Technology Dir. (WL/MTIB)

McDonnell Aircraft Company McAir Wright Laboratory

6c. ADDRESS (01y; State, and ZlPCode) 7b ADDRESS (Ciy State, and ZIPCode)

McDonnell Douglas Corporation
P. 0. Box 516, St. Louis, MO 63166 WrIght-Patterson AFB, OH 45433-6533

Ba. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBEROf &Wks&*)
I ;F33615-82-C-5036

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Wright-Patterson Air Force Base, Ohio PROGRAM PROJECT ITASK IWORK UNIT
453-53ELEMENT NO. NO. 9 NO. ACCESSION NO.

45433-6533 78011F 35 06 29

11 TITLE (Include Security Clawfication)

PRODUCT DEFINITION DATA INTERFACE (PDDI), Access Software User's Manual

12. PERSONAL AUTHOR(S)
(see reverse side)
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month,.Day) S. PAGE COUINT

Final I FROM TO July 1991 144
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 1I. SUBJECT TERMS (Continue on reverw if necessary and identify by block number)

FIELD GROUP I SUB-GROUP Produce Definition Data ICAM ArchitectureLife Cycle Document CAD/CAM
Engrg./Mfg. Interface (continued on back)

19. ABSTRACT (Continue on reverse if necessary and dentify by block number)

This document is the Access Software User's Manual for the Product Definition Data Interface
(PODI) Extensions contract. This document provides procedures for Application Programmers
to use the PDDI Access Software. User's Manual UMS60130000A provides procedures for use of
the PDDI Translator.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
rMUNCLASSIFIEDJNLIMITED 0 SAME AS RPT. QOTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Alan Winn , (513) 255-8787 I WL/MTIB

DO FORM 1473. 8A MAR 83 APR edition may b used unti exhausted. SECLAITY CLASSIFICATION OF -HIS PAGE
A ilother editons are obsoe. UNCLASSIFIED

/

UNCLASSIFIED

12. Personal Author(s):

Chi, Kelly
Baldridge, GaryMagnuson, Charles

.Mehl, Kenneth
Oakes, Janet
Shreve, Edward
Ulmer, Beth
White, George

18. Subject Terms:

Needs Analysis Document
System Requirement Document
State-of-the-Art Document
System Specification Document
SS - Draft Standard
System Design Specification
Product Specification
Operators Manual
Users Manual - Translator

I

UM 560130001

1 January 1987

FOREWORD

This document was produced under Air Force Contract F33615-82-C-5036,
Product Definition Data Interface (PDDI). This contract is sponsored by the
Air Force Wright Aeronautical Laboratories, Materials Laboratory, Air Force
Systems Command, Wright-Patterson, Air Force Base, Ohio.

This program is being administered under the technical direction of Lt.
Eric Gunther, ICAM Project Manager. The MCAIR Program Manager is Mr. Jerry
Weiss and Mr. Herb Ryan is the Deputy Program Manager.

This document was prepared in accordance with the ICAM Configuration
Management Life Cycle Documentation requirements for the Configuration Item.

J

II

UN 560130001
1 January 1987

TABLE OF CONTENTS

FOREWORD

1.0 SCOPE 1-1
1.1 IDENTIFICATION 1-1
1.2 INTRODUCTION 1-1
1.3 OTHER SYSTEM MANUALS -
1.4 APPROACH 1-1

2.0 REFERENCES 2-1
2.1 APPLICABLE DOCUMENTS 2-1
2.1.1 SPECIFICATION 2-1
2.1.2 STANDARDS 2-1
2.1.3 OTHER PUBLICATIONS.. 2-1
2.2 TERMS AND ABBREVIATIONS 2-3

3.0 SYSTEM OVERVIEW 3-1
3.1 INTRODUCTION. 3-1
3.2 SYSTEM INTERFACES 3-1
3.3 SYSTEM ENVIRONMENT 3-1
3.4 PHYSICAL SCHEMAS 3-2
3.5 SOFTWARE PACKAGES 3-2
3.6 TRANSLATOR 3-5
3.7 MODEL ACCESS SOFTWARE 3-7
3.8 DATA ITEMS 3-8
3.9 INTERFACE PARAMETERS 3-11
3.10 MEMORY MANAGER 3-13

4.0 INTERFACE OPERATIONS 4-1
4.1 INTRODUCTION 4-3
4.2 INITIALIZAT[ON/OELETION OF THE'ACCESS SOFTiARE

ENVIRONMENT 4-4
4.3 ENTITY OPERATIONS 4-7
4.3.1 CREATE OPERATIONS 4-8
4.3.2 GET OPERATIONS 4-16
4.3.3 UPDATE OPERATIONS 4-19
4.3.4 DELETE OPERATIONS 4-21
4.3.5 ACTIVATE OPERATIONS 4-29
4.3.6 APPLICATION FLAG OPERATIONS 4-33
4.4 LIST OPERATIONS 4-42
4.4.1 BOOLEANOPERATIONS.......... 4-43
4.4.2 STRUCTURE OPERATIONS 4-47
4.4.3 GENERAL OPERATIONS 4-50
4.4.4 DELETE OPERATIONS 4-57
4.4.5 EDIT OPERATIONS 4-62
4.4.6 SEQUENTIAL READ AND EXECTE OPRATIONS. 4-72

iv

UM 560130001
1 January 1987

TABLE OF CONTENTS

5.0 GENERAL UTILITIES 5-i

6.0 SAMPLE PROGRAMS 6-1

7.0 APPENDICES
CALLING PARAMETER INDEX A-1
ROUTINE INDEX. B-1
RETURN CODE INDEX. C-1
FORTRAN SCHEMA DIAGRAM. D-1
PASCAL SCHEMA DIAGRAM E-1
GENERAL TECHNIQUES/GUIDELINES. F-i
RUN-TIME ENVIRONMENT G-1
MAS ERROR AND WARNING RETURN CODE INDEX H-i

V

UM 560130001

I January 1987

USER'S MANUAL

SECTION I

1.1 Identification

This User's Manual provides a guide for the use of ACCESS Software
developed for the Product Definition Data Interface (PDDI) Project 5601. This
project was developed under Air Force Contract F33516-82-C-5036.

1.2 Introduction

Capabilities documented in this manual include:

o Access Software Initialization
o Entity Operations
o List Operations

This PDDI software operates on IBM 43xx, 308xx or DEC VAX 11/780
computers. The environmental requirements are described in Section 3.

The PDOI system documentation does not address local (native) system or

computing environment documentation.

This manual addresses IBM procedures and terminology only.

1.3 Other system Manuals

The associated Operator's Manual (OM) describes the system operation and
installation procedures. It is intended for use by computer operotors and
programming personnel.

An associated User's Manual (UM 560130000) is provided for users of the
PDOI Translator.

The PDDI Product Specification (PS) provides routine descriptions, data
dictionary listings and PDDI system messages for system maintenance purposes.

1.4 Approach

This User's Manual is divided into six (6) main sections:

1-I

UM 560130001
1 January 1987

Section 1- Scope of this document.

Section 2 - Reference documentation applicable to PDOI and this
document.

Section 3,- The PDDI architecture at a high level and introduction to
the use of the Access Software.

Section 4 - Entity and List Operations needed to access the data
structures passed back to the Application program.

Section 5,- Descriptions of the general utilities routines available
with the Access Software.

Section 6.- Sample programs using the Access Software in Pascal and
FORTRAN.

Appendix A - Access Software Calling Parameter Index

Agoendix a - Alphabetical Access Software Routine Index

Appendix C - Access Software Return Code Index

Appendix 0 - Access Software FORTRAN Schema Diagram

A- Access Software Pascal Schema Diagram

Appendix F - General Techniques/Guidelines

Appendix G - Run-Time Environment

Aonendtx H - Error and Warning Return Code Index

or

1-2

UM 560130001
1 January 1987

SECTION 2

2.1 Aolicable Documents

2.1.1 Specification:

DOD-D-1000B Drawings, Engineering and Associated Lists
MIL-D-5840 Requirements for Data, Engineering and Technical

Reproduction

2.1.2 Standards:

ANSI Y14.5 Dimensioning and Tolerancing
ANSI Y14.26M Digital Representation

Communication of Production
Definition Data

ANSI 846.1 Surface Texture (Surface Roughness,
Waviness and Lay)

ANSI 892.1 Involute Splines and Inspection
DOD-STD-IOOC Engineering Drawing Practices
MIL-STD-9 Screw Thread Conventions and Methods

of Specifying
MIL-STD-12 Abbreviations for Use on Drawings,

Specifications, Standards and in
Technical Documents -

IDS150120000C ICAM Documentation Standards
IEEE STD 829 Standards for Software Test

Documentation
ISO/TC184/SC4/WG1 4.2:2 The Step File Structure (Working Paper

Version 1.0 28 April 1981

2.1.3 Other Publications:

CLD150120000 ICAM Document Catalog
FTR110210000U ICAM Architecture
FTR110232000U ICAN Architecture Part II, Automated

IDEFO Development

2-1

UN 560130001
1 January 1987

Product Definition Data Interface

ITR560130001U First Interim Technical Report
(Period I Oct 82 - 31 Dec 82)

ITR560130002U Second Interim Technical Report
(Period 1 Jan 83 - 31 Mar 83)

ITR560130003U Third Interim Technical Report
(Period 1 Apr 83 - 30 June 83)

ITR560130004U Fourth Interim Technical Report
(Period 1 Jul 83 - 30 Sep 83

ITR560130005U Fifth Interim Technical Report
(Period 1 Oct 83 - 1 Dec 83)

ITR560230006U Sixth Interim Technical Report
(Period 1 Jan 84 - 31 Mar 84)

ITR560130007U Seventh Interim Technical Report
(Period 1 Apr 84 - 30 Jun 84)

ITR560130008U Eighth Interim Technical Report
(Period 1 Jul 84 - 30 Sep 84)

ITR560130009U Ninth Interim Technical Report
(Period 1 Oct 84 - 31 Dec 84)

ITR560130010U Tenth Interim Technical Report
(Period 1 Jan 84 - 31 Mar 85)

FTR56OI30001U Task I, Final Technical Report -
System Test Methodology, Volume III

Technical Operating Report -
Product Assurance/Quality
Assurance - 15 Oct 85

SO 560130001U Scoping Document

NAD560130000 Needs Analysis Document

SAD560130000 State-of-the-Art Document

SRD560130000 System Requirement Document

2-2

UM 560130001
1 January 1987

SDS560130000 System Design Specification Document

SS 560130100 System Specification Document

SS 560130200 System Specification Document -
Draft Standard

STP560130000 System Test Plan

STR560130000 System Test Report

PS 560130000 Product Specification

OM 560130000 Operator's Manual

UM 560130000 User's Manual (Translator)

2.2 Terms and Abbreviations

The following list explains terminology, acronyms, and other abbreviations
used in this document.

ACCESS SOFTWARE - A set of routines for creating, managing and querying an
incore Working Form model.

ANSI - American National Standard Institute.

APPLICATION - Refers generically to any software modules which are used in
CAD/CAM functions.

APPLICATION REOUEST - A request initiated by an application program, either
through batch or interactive processing, which will interrogate the model
through the PDDI Access Software to obtain or operate on specific information
regavu*ng the model and its components or elements.

APPLICATION REOUESTED DATA - The data which fulfills the application's original
request and which is in the proper format and readable by the application.

AIM - American Standard Code for Information Interchange.

ATTRIT - An item of information about an entity. A key attribute identifies
the entity; a rojj iterate gives a fact about an entity.

CAD/CAM - Computer Aided Design/Computer Aided Manufacturing.

- A collection of entities that are alike in some manner.

CJ.ST - IBM Command lists.

CONSITUENT - A specific instance of an entity that is used In the definition
of some other entity.

2-3

UM 560130001
1 January 1987

CONTEXT-FREE GRAMMAR - The syntax of the language gives a precise specification
of the data without interpretation of it,

DOMAIN - The set of values permissible in a given context. A natural domain is
the value set native to a given machine architecture; an imposed domain is a
specific subset of the natural domain.

DYNAMIC ALLOCATION - The allocation (and deallocation) of memory resources as
required by the application. The opposite is s allocation where a fixed
size segment of memory is available to the application.

EBCDIC - Extended Binary Coded Decimal Interchange Code (IBM character set).

ENTITY - A collection of facts (attributes) about something of interest.

EXTERNAL REFERENCE - A reference to some quantity of data that exists somewhere
outside the scope of the immediate body of information.

FUNCTIONALITY - (1) To show that the configuration item has fulfilled the
specified requirements. (2) The receiving and sending systems can operate on
the entity in the same manner with the same resul'ts within a pre-defined
tolerance.

IJ JEL.. .IE - Pascal source code from another file or library included on the
compilation of a Pascal source file.

INPUT DATA - That information which the application needs to supply in order to
interrogate or operate on the model. This data may assume only these forms
prescribed by the PDODI Access Software specifications.

INTERPRETED REQUEST - Input data which has been appropriately modified to
conform to the PDDI Access Software's internal data representation so that it
may be further processed.

I"L - Job Control Language - IBM language used to identify a job and describe
its requirements to an operating system.

MY- An item of data that uniquely identifies some specific instance of an
entity.

M - MCAIR's acronym for the PDDI Access Software (Model Access System).

M- A body of data that defines the characteristics of a data model or
structure.

- A collection of POD that is transferable, displayable, accessible, and
equivalent to a Part. The internal representation of the application data, as
initiated and organized by the user. The model is also referred to as the
Working Form.

2-4

UM 560130001
1 January 1987

MODEL NETWORK DEFINITION - The set of rules and definitions which outline in
detail the data structure whereby higher order entities may be composed of
lower order entities, or constituents, and the lower order entities may be
constituents of one or more higher order entities.

NATIVE SYSTEM - The PDD and applications in a format that is unique to the
database of a CAD system.

PARSE - The process of analyzing input strings (records) to identify fields and

to verify that the data has a valid format.

PDD - Product Definition Data.

POST-PROCESSOR - A phase of the translator where data is received from the
Exchange Format and is converted to the Working Form.

P- A phase of the translator where data is taken from the Working
Form and is converted to the Exchange Format.

QUALITY - The composite of all the attributes or characteristics including
performance of an item or product.

QUALITY ASSURANCE - The planned and systematic establishment of all actions
(management/engineering) necessary to provide adequate confidence and
nonconformance prevention provisions and reviews are established during the
design phase and performed throughout the software development and life cycle
phases.

QUALITY CONTROL - The planned and systematic application of all actions
(management/technical) necessary to control raw materials or products through
the use of test, inspect, evaluate, and control of processes.

REOUESTED DATA - See Application Request Data.

RU.N SSEM - The Translator sub-package which provides the communication
interface between the user and the pre/post-processors.

SCHEMA - Those definitions which describe the content of the data and the
relationship between the various elements or components of the data.

SOFTWARE OUALITY ASSURANCE (SOA) - The planned and systematic establishment of
all actions necessary to provide adequate confidence that nonconformance
prevention provisions and reviews are established during the design pnase and
performed throughout the software development and life cycle phases.

SOFTWARE OUALITY ASSURANCE PLAN (SOAP) - An organized description of the
methods, policies, and procedures necessary to conduct software quality
assurance and control activities during the design, development, delivery, and
maintenance phases.

2-5

UM 560130001
1 January 1987

SOFTWARE OUALITY CONTROL - The planned and systematic application of all
actions (management/technical) necessary to ensure that the software under
development or maintenance satisfies the technical requirements through the use
of tests, demonstrations, inspections, evaluations, and control of processes.

SYSTEM CONSTRAINTS - Those hardware and software environmental constraints
which will be imposed upon the PO01 Access Software that will limit its
implementation and application. An example of such constraints might be the
particular compiler used to compile the POOl.Access Software package.

TRANSFER DATA - The data required to make an exchange of data between systems
(e.g., delimiters, record counts, record length, entity counts, numeric
precision).

TRANSLATOR - A software MECHANISM that is used for passing data between the
Exchange Format and Working Form of the POD.

- A collection of the data that makes up an instance of an entity. The
information is stored as records in a linked list.

TREE STRUCTURE - The arrangement of information within a tree.

TSO - Time Sharing Option - IBM function which provides conversational time
sharing from remote terminals.

USER COMPUTER SYSTEM - The specific hardware, operating systems, anr'
applications software systems that the user will employ to implement the PDD.
Access Software.

WORKING FORM - A memory resident form of a model that supports rapid access to
entities via the Access Software.

WORKING FORMAT- The physical representation of the Working Form within the
computer.

2-6

UM 560130001
1 January 1987

SECTION 3

SYSTEM OVERVIEW

3.1 Introduction

The purpose of the PDDI Software System is to provide a prototype for the
communication of complete Production Definition Data (PDD) between dissimilar
CAD/CAM Systems. This system will serve as the information interface between
Engineering and Manufacturing functions. It is composed of Access Software,
Conceptual Schema, Exchange format and a Translator. (See Figure 3-1).

The Access Software is a set of callable utility programs that will allow
applications to manipulate and query PD0. The Conceptual Schema contains the
human readable data needed to define a CAD/CAM model. The Exchange Format is a
neutral physical sequential format for passing data between dissimilar
systems. The PDDI Translator is the software mechanism for passing this data
between the Exchange Format and the Working Form of the POD.

3.2 System Interfaces

The PODI software must interface with the computer system on which it is
installed, the local (native) CAD/CAM database, the Exchange Format, the
Working Form, and the user (application). It does this via PDDI Access
Software, the PDDI Translator and local (native) developed software packages.
Note: Simple interim database software is included in the Translator
software. This software is an interim program to be used until an interface to
the native database system is available. See Appendix D for an explanation.
Figure 3-3 shows the environment in which the PDDI system was developed. This
figure also shows the versatility of the system and the multi-hardware
environment in which it may be used. The left-hand side of Figure 3-3 shows
the PDDI development environment.

3.3 System Enviroment

The POD! system was developed in the following computing environment:

Comouter/Ooeratino System

IBM 43XX/MVS with TSO and associated tape drives, disk drives and
terminals.

DEC VAX 11/780 VMS with associated tape drives, disk drives and terminals.

3-1

UM 560130001
1 January 1987

Define Needs
for

Manufacturing
Data
From

Engineering

Esehang Formas

DOegcnizatio

/ Data 0rganlz*,ati
Ogaiato

FigSpeci3-c PDDI yte Acitctr

3-2

UM 560130001
1 January 1987

Storaae (Core) Reouirements

The minimum core requirements for the P00I software and database is 1.0M
plus the size of the model. (The PODI Mechined Rib model required .57M)

* PODI Machine Rib

Compilers

IBM-PASCAL/VS Release 2.2

DEC-PASCAL V3.3, FORTRAN 77 V4.4

Terminals

E&S PS300 (or equivalent for graphics applications)
IBM 3270 (or equivalent)

The PD0I system is transportable to other computing systems. However,
appropriate local (native) interfaces (translator) must be provided. The
right-hand side of Figure 3-2 shows the PODI commercial demonstration
architecture for UNIGRAPHICS and Computervision Systems.

3.4 Physical Schemas

The Working Form physical schema is determined through a data dictionary
or PASCAL include files. An explanation of the form and the use of these files
can be found in Appendix A. The Exchange Format physical schema is defined by
the PDDI conceptual schema and the specification for the neutral file format.

3.5 Software Packaoes

The software for the system consists of two (2) packages - Access Software
and Translator.

3-3

UM 560130001
I January 1987

MPUTER H CA0034X
VISION ST, Systemransistor

IBM MD MISCO
Working

Working
Ad"Mod W'o'kng Form

Geometry For..
Syswm

Modeler

CADO WO Pool Pool Pool Unweanics
Access Exchotge Access

Emulation Formal Translatorsoftware software

POO
Editor comunications

Pool UTAC
106 Access

Tr 0.14 ollwale Transistor

Mfg A I

Application -------- - -------
0 Working CMPP

With Pool I VAX Form System
Emulation Access DNS I

Disk I I
Color Form I Software I

CAGA Display 0 wq

C)c

Eng Link working

(MCL) F-15 Form Pool Deliverables
Canopy AM

AUPPS

Figure 3-2 PDDI Environment

3-4

UM 560130001
1 January 1987

3.6 Trnsar

The PDI Translator is the software package used to format PDD for
transmission between systems. The Translator is broken up into three main
sub-packages. These sub-packages are: "Run System', "Pre-Processor" and
"Post-Processor". (See Figure 3-3).

The Run System is the interface between the user and the "processors".
This package provides menus, queries and system responses for the user.

Functions performed by this package include: Perform system configuration
activities, determine files needed by the processors and make them available,
and provide messages to aid user interfaces.

Access to the native database is also provided by this package via calls
to user-supplied routines. Data from this database is placed into or obtained
from the Working Form using calls to the Access Software. The pre-processor or
post-processor is then called to perform the desired translation.

The erg-Processor provides the interface from the Working Form to the
Exchange Format.

Working Form entities, in the Working Form physical schema, are accessed
via the Access Software. Tables, obtained from the Run System, are then used
to map the Working Form entities to the Exchange Format physical schema. The
Exchange Format entities are then encoded and placed into the Exchange Formatfil1e.

Transfer data is collected during entity processing. This data is encoded
and placed into the Exchange Format file.

Error messages or condition codes are sent to the "Run System" to indicate
the status of the transfer.

The Rost-Processor provides the interface from the Exchange Format to the
Working Form.

A set of tables, obtained from the Run System, is used to map the Exchange
Format entities to the Working Form physical schema. The Access Software is
then used to place these entities into the Working Form.

3-5

UM 560130001
1 January 1987

USE

RUN
SSYSTEMI.

I

II

I!

I I

PRCSO PRCESO

TRANSLATOR

Figure 3-3 Translator Architecture

3-6

UM 560130001
1 January 1987

3.7 Model Access Software

The PODI Access Software is a set of Pascal procedures that maintains the
physical structure of related user data in computer memory. This user data is
referred to as the working form model. The package provides an interface to
the working form model for application programs to create, relate, and access
elements of user data.

The application programs are independent of the physical structure of the
stored data elements. This independence ensures that as different structure
techniques are implemented, the application programs need not change.

This package manages two types of data: entities and lists. An entity is an
element of data supplied by the application to be stored in the working form.
A list is a collection of entity keys. The package manages lists created by
the application in the working form.

The Access Software allows the structuring of the user data. The entities can
be related in user/constituent order. An entity may be related to multiple
user entities, creating a network structure in the working form. An entity may
also contain multiple constituent entities.

3-7

UM 560130001
1 January 1987

3.8 DTITEMS

The Access Software manages two types of data items within the working form -

Entities and Lists.

ENTITY

An entity is the principle data item managed by the Access Software, and is:

o Defined by the conceptual schema in the application creating the
entity.

o Accessed by a unique key return from the create entity function
o A node in the working form structure containing an Attribute Data

Block(ADB), and references to other entities in Constituent
Relationships and/or User Relationships

ATTRIBUTE DATA BLOCK

An Attribute Data Block(ADB) is a collection of data embedded in a single
contiguous block of memory. Individual pieces of data within an ADB are call
attributes. MAS manages only the first three items in the structure of an
ADB. These three attributes, KIND, LENGTH, and SYSUSE, are required in every
entity. A short description of each attribute follows:

KIND - Must be the first item defined in the ADB. The KIND defines the entity
type code. This code cannot be changed.

LENGTH - Must be the second item defined in the ADB. The LENGTH defines the
number of bytes in the ADB including KIND, LENGTH, and SYSUSE.

SYSUSE - One full word of system use data reserved for internal purposes. This
data is never used by the application, and should never be inspected or
modified.

NOTE: All other attribute data in the ADB is managed by the application
program.

3-8

UM 560130001
1 January 1987

CONSTITUENT RELATIONSHIP

A constituent entity is used in the definition of the user entity. Inclusive
constituents of an entity encompass all descendents, their descendents, and so
forth until there are no more descendents. For example in Figure 3-4, Point 0
(P0) and Point 1 (P1) are constituents of Line 1.

LINE - ENTITY(5008);
IDENT *:KEY rJDENT;
DISPLA T_.DISPLAY;
P0 POINT; Lv
P1 POINT;
END..ENTITY;

Ficure 3-4 LINE: An Entity With Constituents

3-9

UM 560130001
1 January 1987

USER RELATIONSHIPS

A user entity uses constituent entities in its definition. Inclusive users of
an entity include all ancestors, their ancestors, and so forth until there are
no more ancestors. For example in Figure 1-1, Line 1 is a user of Point 0 (PO)
and Point 1 (P1).

LIST

A list is a collection of entity keys which is:

o Created by the Application program.

o Accessed by a unique list key returned from the Create List Functions.

o Used by the Application to store selected entity keys for subsequent
processing.

3

3-10

UM 560130001
1 January 1987

3.9 INTERFACE PARAMETERS

Each interface parameter has a name and a type. This information is shown as
follows:

DATA-NAME:DATA-TYPE.

DATA-NAME PARAMETERS

The following conventions are used to name parameters:

- Keys are named KEY1, KEY2,...KEYN.

- The ADB Is named ENTDEF.

- Text parameters are named according to thei- purpose.

- Integer parameters are named according to their purpose.

- A return code is produced by every inerface routine/operation. This
parameter is a full word integer and is always named IRC. (See Appendix for
a return code list.)

DATA-TYPE PARAMETERS

Data-Type parameters may be one of the following:

ANYKEY - Access key of an entity or list.

ENTBLOCK - Entity data block definition.
- In Pascal, probably declared as a record.
- In Fortran, declared as a common or dimension array.

CHARACTER - A single character as defined by the system.

INTEGER - A full word integer.

3-11

UM 560130001

1 January 1987

FORMAL DATA TYPES

The following is a reference list of data-types for interface calls in this MAS
document.

ANYKEY - INTEGER
LISTKEY - ANYKEY
ENTKEY - ANYKEY
ORDKIND - INTEGER
EXTRETCODE - INTEGER
LISTPSTN - INTEGER
LISTINOX - INTEGER
LISTSIZE - INTEGER
ROUTINE - ARRAY(1...8) OF CHARACTER
NAMTYP - ARRAY(1... 6) OF CHARACTER

(ADB) ENTBLOCK - RECORD OF
KIND - ORDKIND
SIZE - INTEGER
SYSUSE - INTEGER
DATA - (USER DEFINED)

PASCAL APPLICATIONS

The formal declarations for the Access Software interface routines are
maintained in the member APL TYP of the library "CADS.FRMI.MASymmdd.INCLD"

Where:
y - year

mm - month
dd - day

of the latest Access Software release.

3-12

UM 560130001

1 January 1987

3.10 MEMORY MANAGE

A Model Access Memory Manager was developed to replace the PASCAL run-time
memory manager. It reduces the number of bytes of overhead required for
free-space collection, and isolates the working form model from all other
PASCAL dynamic allocations.

This memory manager is currently in the MAS package and requires no user
intervention for utilization.

3-13

UN 560130001
1 January 1987

SECTION 4

INTERFACE OPERATIONS

INTROMl 4-3

INITIA/UIEV'LETON OF THE MAS ENVIRONMENT 4-4. 4-5I4-6

ENT.ITY.I..S 4-7

CREATEXOTrONS 4-8
AM 4-9

OWL -4-10
MI.......................4-11F4-12

GET. 4-17

S..... 4-18

UPDATE TIONS.. 4-19
low... -........................ 4-20

DELETE OWTIONS 4-21
4-26

4-26
i .. .4-27* 4-28

ACTIVARI WiEATiO6NS.. . 4-29
.C.I.A . .R.T.. S........................ 4-30

4-30. 4-31

N4-32
APPLlCATI4 FLAG OPERATIONS 4-33

meow 4-35
rECO : * : . * : 4-36
r qA EW .4 -3 8

ESA4-39

MAESVT . 4-40
MAESVL , * . , 4-41

4-1

UN 560130001
1 January 1987

INTERFACE OPERATIONS (CONTINUED)

LIST OPERATIONS 4-42

BOOLEAN OPERATIONS 4-43
MALAND. 4-44
MALNOT 4-45
MALOR......................... 4-46

STRUCTURE OPERAIONS. 4-47
NALK 4-48
MALK 4-49

GENERAL OPERATIONS 4-50
MAL. 4-51
f'ALN 4-52
MALCPY 4-53
MALFND 4-54
MALNO. 4-55
MALGTK 4-56

DELETE OPERATIONS. 4-57
lktDLD 4-58
MALDA 4-59
MALDI. 4-60
MALOCK. 4-61

EDIT OPERATIONS. 4-62
MALATC 4-63
MALINS 4-64
MALROE 4-65
MALREP 4-66
MALRMV. 4-67
MALROR 4-68
MALRPL 4-69
NALRVS 4-70
MALSRT 4-71

SEQUENTIAL READ AND EXECUTE OPERATIONS4-72

MALRD. 4-73
NALSTF 4-74
MALSTR 4-75
MAEXEQ 4-77
MAKXEQ 4-78
MALXEQ 4-79
MAECXQ 4-81
MAEUXQ 4-82

4-2

UM 560130001

1 January 1987

4.1 INTROQUCTION

The Entity Operations and List Operations sections provide the applications
programmer with the interface operations needed to access the data structures
passed back to the application program. (See appendix for Pascal and FORTRAN
Schema Diagrams.)

Figure 4-1 illustrates the interrelationships of the Access Software interface
operations shown in these sections.

ADS List (of KEys)

POD! ACCESS SOFTWARE INTERFACE OPERATIONS

U

9Y
LISTr 4-LS I r e rT

U-M L STR3UCTURE LIST

WORKING USER
COPY APPLICATION

Figure 4-1 Interface OperitiMn

4-3

UM 560130001
I January 1987

4.2 INITIALIZATION/DELETION OF THE MAS ENVIRONMENT

Two routines provide the interface used to initialize the Access Software.

The basic initialization operation (MAINIT) creates a working model and enables
the Access Software.

The MAKILL function is used to destroy the working model and disable the Access
Software.

An application does not have to install a data dictionary. It can create and
use entities on an jd hoc basis. If a data dictionary is not installed, the
following limitations are imposed:

1. Any entity type will be permitted.

2. The interface routines will not validate any operation other than
outright errors; e.g., defining an ADB with a negative length. The
application is - "on its own*.

3. There will be no provision for organization of entities by class.

Included with the initialization and deletion operations descriptions that
follow are the error and warning messages that may be returned. Appendix A
contains a complete list of these messages along with their numeric codes.

4-4

UM 560130001

1 January 1987

FUNCTION: Initialize the working model.

FORMAT: MAINIT (IRC)

INPUT:
None

OUTPUT:
IRC: INTEGER

The procedure return code.

DESCRIPTION: The working model will be initialized.

The Access Software is enabled.

ERRORS: Messace Exlanatio

MASINITFAILED Could not create schema and it.
root.

MAINITALREADYDONE Root already created.
NOTENOUGHfROON No more core memory.

NOTE: Do not call MAINIT twice in succession. This will result in 2 Access
Software environments. Use a MAKILL to delete the current environment
before initializing another.

4-5

UM 560130001

1 January 1987

MAKILL

FUNCTION: Delete the current working model.

FORMAT: MAKILL (IRC)

INPUT:
None

OUTPUT:
IRC: INTEGER

The procedure return code.

DESCRIPTION: The entire working model is destroyed.

The Access Software is disabled.

ERRORS: None.

4-6

UM 560130001

1 January 1987

4.3 ENTITY OPERATIONS

The basic entity operations can be categorized by the following functions:

Activate
Create
Get
Delete
Update
Process Flags
Application Flags

All operations performed on entity constituent lists are done by list
operations, with the exception of creating an entity with constituents.

Included with the entity operations descriptions presented on the pages that
follow are the error and warning messages that may be returned. Appendix A
contains a complete list of these messages along with their numeric codes.

4-7

UM 560130001
1 January 1987

4.3.1 CREATE OPERATIONS

These operations allow the creation of entities in the working model. The
application creates the entity in its local memory space. This includes the
specification of KIND, LENGTH, and any other attribute data as needed. The
KIND value cannot change. The LENGTH value can be changed by the MAEUD
function.

The create routines are shown in the following table.

DESCRIPTION ROUTINE

Create an entity. MAECR

Create an appl 4-, ion list of constituent entity references. MAEC

Create ar application list of inclusive constituent entities. MAECI

Create an application list of inclusive constituents by KIND. MAECIK

Create an application list of user entity references. MAEU

Create an application list of inclusive user entities. MAEUI

Create an application list of inclusive users by KIND. MAEUIK

4-8

UM 560130001
1 January 1987

FUNCTION: Create an entity.

FORMAT: MAECR(ENTDEF,KEY1,KEY2,IRC)

INPUT:
ENTDEF : ENTBLOCK

The application data structure which contains
the entity definition.

KEYl ANYKEY
The entity or list of entities to be made
constituents of the entity being created.

OUTPUT:
KEY2 ENTKEY

The key of the newly created entity.

IRC : INTEGER
The return code.

DESCRIPTION: The entity is added to the model. Constituent entities are
connected to the entity. If KEY1 is an entity key then only that
entity will become a constituent. If KEY1 is a list key then all
entities in the list will become constituents.

A nil key may be used if the entity being created is to have no
constituents(a full word integer zero can be used as a nil key).

NOTE: The application is responsible for the format of the AC-
data after the first three items (KIND, SIZE, SYSUSE).

EXAMPLE: See Sample Programs Section.

ERRORS: Message Descrtion

BADLIST_POSITION Incorrectly built model.
BADENTKIND Kind of given key undefined.
NOT_ENOUGHROOM No more core memory.

4-9

UM 560130001

1 January 1987

FUNCTION: Create an application list of constituent entities.

FORMAT: MAEC(KEY1,KEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities for which a list
of direct constituents is wanted.

OUTPUT:
KEY2 LISTKEY

The returned key of the application list of
direct constituents.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is created. If KEY1 is an entity key then the constituent
list of KEY1 will be copied into KEY2. If KEY1 is a list key
then the constituent lists of each entity will be copied into
KEY2.

ERRORS: Message Descrtoo

BADLIST_REFERENCE Given key not an entity or a list.
BADENTKEY Nil key.
NOTENOUGH_ROOM No more core memory.

4-10

UM 56013000:
1 January 1987

FUNCTION: Create an application list of inclusive corstituent entities.

FORMAT: MAECI(KEY1,KEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entitles whose inclusive
constituents are wanted.

OUTPUT:
KEY2 LISTKEY

The returned key of the inclusive application
list of constituents.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is created. If KEY1 is an entity key, then the inclusive
constituent list of KEY1 will be copied into KEY2. If KEY1 is a
list key, then the inclusive constituent lists of each entity
will be copied into KEY2. KEY1 is not included in KEY2.

No duplicate keys will exist. Entities are marked as "processed"
when placed in the output list. If a processed entity is
encountered again on another constituent list, it will not be
repeated on the output list.

EXAMPLE: See Sample Programs Section.

NOTE: See the System Overview Section for further explanation of
inclusive constituents.

ERRORS: Messaqe Oescriotion

BADLIST..REFERENCE Given key not an entity or a list.
BADENTKEY Nil key.
NO..OREROOM No more core memory.

WARNING: NOLISTCREATED

4-11

UM 560130001
1 January 1987

MAECIK

FUNCTION: Create an application list of inclusive constituents of a

specified KIND.

FORMAT: MAECIK(KEY1,KIND,KEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities whose inclusive
constituents are to be searched for by specified
KIND.

KIND INTEGER
The KIND code of an entity or an entity class.

OUTPUT:
KEY2 LISTKEY

The key of a list which will contain all
entities of the specified KIND found within the
inclusive constituents of KEYl.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is created. If KEY1 is an entity key then the inclusive
constituents of the specified KIND will be copied into KEY2. If
KEY1 is a list key then the inclusive constituents of all
entities on the list of the specified KIND will be copied into
KEY2.

No duplicate keys will exist.

NOTE: See Entity in the System Overview for further explanation of
inclusive constituents.

ERRORS: Message Descrttion

BADLISTREFERENCE Given key not an entity or a list.
BADENTKEY Nil key.
NOMOREROOM No more core memory.

WARNING: NOLISTCREATED

4-12

UM 560130001
1 January 1987

FUNCTION: Create an application list of user entity references.

FORMAT: MAEU(KEY1,KEY2,IRC)

INPUT:
KEYl ANYKEY

The entity or list of entities for which a list
of direct users is wanted.

OUTPUT:
KEY2 LISTKEY

Returned key of the application list of direct
users.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is created. If KEY1 is an entity key then the user list of
KEY1 will be copied into KEY2. If KEY1 is a list key then the
user lists of each entity will be copied into KEY2.

EXAMPLE: See Sample Program Section.

ERRORS: Message Descri.tjon

BADENTKEY Nil key.
NOMOREROOM No more core memory.

WARNING: NOLISTCREATED

4-13

UM 560130001
1 January 1987

FUNCTION: Create an application list of inclusive user entities.

FORMAT: MAEUI(KEY1,KEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities whose inclusive
users are wanted.

OUTPUT:
KEY2 LISTKEY

The returned key of the inclusive application
list of users.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is created. If KEY1 is an entity key, then the inclusive
user list of KEY1 will be copied into KEY2. If KEY1 is a list
key, then the inclusive user lists of each entity will be copied
into KEYZ. KEY1 is not included in KEY2.

No duplicate keys will exist.

NOTE: See the System Overview Section for further explanation of
inclusive users.

ERRORS: Message Descriotion

BADLISTREFERENCE Given key not an entity or a list.
BADENTKEY Nil key.
NOMOREROOM No more core memory.

WARNING: NOLISTCREATED

4-14

UM 560130001

1 January 1987

MAEUIK

FUNCTION: Create an application list of Inclusive users by KIND.

FORMAT: MAEUIK(KEY1,KIND,KEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities whose inclusive
users are to be searched for by specified KIND.

KIND INTEGER
The KIND code of an entity or an entity class.

OUTPUT:
KEY2 LISTKEY

The key of a list which will contain all
entities of the given KIND found within the
inclusive users of KEY1.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 is created. If KEY1 is an entity key, then the inclusive
users of the specified KIND will be copied into KEY2. If KEY1 is
a list key, then the inclusive users of all entities on the list
of the specified KIND will be copied into KEY2.

NOTE: See the System Overview Section for further explanation of
inclusive users.

ERRORS: Messaae

BADLISTREFERENCE Given key not an entity or a list.
BADENTKEY Nil key.
NO_4OREROOM No more core memory.

WARNING: NOLISTCREATED

4-15

UM 560130001
1 January 1987

4.3.2 GET OPERATIONS

These operations are used to get the MAS copy of a specified entity attribute
block and load it into the application memory area. Get operations are also
used to get a specified attribute in the entity ADB.

The get routines are shown in the table below.

DESCRIPTION ROUTINE

Get the KIND value of a specific entity. MAEGKN

Get the ADB of a specific entity. MAEGTK

4-16

UM 560130001
1 January 1987

MAEGKN

FUNCTION: Get the KIND value of a specific entity.

FORMAT: MAEGKN(KEY1,KIND, IRC)

INPUT:
KEYI ENTKEY

The entity whose kind is to be gotten.

OUTPUT:
KIND INTEGER

The KIND value of the specified entity.

IRC : INTEGER
The return code.

DESCRIPTION: The stored ADB is located. The KIND value in the AD8 is moved tc
the application ADB.

ERRORS: Messaae Oescrittioln

BADENTKEY Nil key or not an entity.
NO_MORE_ROOM No more core memory.

4-17

UM 560130001

1 January 1987

MAEGTK

FUNCTION: Get the ADB of a specific entity.

FORMAT: MAEGTK(KEY1,ENTDEF, IRC)

INPUT:
KEY1 ENTKEY

The key of the entity to be gotten.

OUTPUT:
ENTDEF : ENTBLOCK

The ADB to receive the stored entity.

IRC : INTEGER
The return code.

DESCRIPTION: The stored ADB is located and moved to the application ADB. If
KEY1 is a nil key, then a nil KIND and a zero LENGTH is returned.

EXAMPLE: See Sample Program Section.

ER4ORS Message Descriotion

BADENTKEY Nil key or not an entity.
NO_MOREROOM No more core memory.

4-18

UM 560130001
1 January 1987

4.3.3 UPDATE OPERATIONS

These operations are used to update the ADB for specified entities. In
general, the application should use the MAEGTK function to get the ADB before
the update function is used.

The update routine is shown in the following table.

DESCRIPTION ROUTINE

Update the attribute data block of an entity. MAEUD

4-19

UM 560130001
1 January 1987

FUNCTION: Update the attribute data block of an entity.

FORMAT: MAEUD(KEY1,ENTDEF,IRC)

INPUT:
KEY1 ENTKEY

The entity to be updated. This must be an
entity key.

ENTOEF : ADB
The ADS supplying the update values.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: The ADS of KEY1 will be updated. The value of KIND must agree
with the Model Access Software copy of this entity. Otherwise,
an error will result. If the LENGTH is greater than the current
LENGTH, then a new ADS will be created with more space.

ERRORS: Message Descriptioan

BADENTKIND Kind or given key is undefined.
BADENTKEY Given key is nil.
CANTUPDATEENTITY
NOMOREROOM No more core memory.

4-20

UM 560130001

1 January 1987

4.3.4 DELETE OPERATIONS

These operations address how you delete entitles from the MAS working form
model. The entities in the working model currently are grouped into the
following classifications:

o Dependent
o Support
o Primary
o Secondary

Delete rules have been established for the entities in these classifications.
For a new entity kind, the default classification is "Dependent" unless it is
otherwise defined.

DELETELRULES

The delete rules apply to the constituent relationships with which entities are
defined. They determine whether a constituent entity can be deleted by
checking each of its user entities. For example, the delete rules applied to
entity (A) in relation to a specific user entity (B) may be different than the
delete rules for that same entity (A) in relation to another specific user
entity (C).

The action taken for the IDS/MAS delete classifications are determined by the
combinations of yes/no (Y/N) answers to the following conditions, posed as
questions:

(1) Can this constituent entity be deleted from a specific user entity?

(2) Does the deletion of this (constituent) entity cause deletion of a
specific user?

(3) Does deletion of a specific user cause deletion of this entity
(constituent)?

CONDITION

(1) (2) (3) DELETE CLASSIFICATION

N N N Dependent
N N Y Support
N Y N Primary
Y N N Secondary

4-21

UM 560130001
1 January 1987

The delete classifications are defined as follows:

Dependent - Constituent entity cannot be deleted because the user entity
is dependent on its existence. The user entity may be deleted
without deleting the constituent entity.

Support - Constituent entity cannot be deleted because the user entity
is dependent on its existence. The user entity may be
deleted; however, the constituent entity will also be deleted
unless another user entity does not permit the deletion of the
constituent entity.

Primary - Constituent entity can be deleted, but only if the user
entity can, and will, also be deleted. The user entity may be
deleted without the constituent entity being deleted.

Secondary - If the number of constituents falls below an established
minimum, the constituent entity can be deleted and, if
possible, the user entity will also be deleted. If the user
entity cannot be deleted, none of the minimum constituents can
be deleted. If the number of constituents is greater than or
equal to the minimum, the constituent entity can be deleted.

Test routines are provided to return the entities or lists that would be
deleted if actual delete routines were used.

4-22

UM 560130001
1 January 1987

DELETE ROUTINE

The IDB/MAS delete routines are presented in the following table. The first
two routines actually delete entities (MAED, MAEDI). The third and fourth
routines test the delete function, allowing the programmer to see the results
of a potential delete without modifying the stored data (MAEDT, MAEDTI).

When deleting a list of entities that includes users and constituents, the list
should be ordered so that the users are processed before the constituents. The
routines MALROR and MALRORI perform this function on an application list. (An
entity constituent list should never be reordered.)

DESCRIPTION ROUTINE

Delete an entity or list of entities. MAED

Delete an entity or list of entitles and the inclusive MAEDI
constituents.

Delete test an entity or list of entities. MAEDT

Delete test an entity or list of entities and the inclusive MAEDTI
constituents.

4-23

UM 560130001
1 January 1987

FUNCTION: Delete an entity or list of entities.

FORMAT: MAED(KEY1,KEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be deleted.
OUTPUT:

KEY2 LISTKEY
The list of entities marked for deletion.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key, and the order of
the entities in the list may be important. KEY2 will list any
entities from the KEY1 list that were not deleted. If all
entities are deleted, the mark list will be empty.

ERRORS: MessaAe Description

BADLIST_REFERENCE Given key not an entity or a list.
RULEOESNOT_MATCH Rules defined incorrectly.
NO_MOREROOM No more core memory.

WARNINGS: EMPTYMARKLIST No entities marked for delete.

4-24

UM 560130001
1 January 1987

FUNCTION: Delete an entity or list of entities and their inclusive

constituents.

FORMAT: MAEDI(KEY1IKEY2,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be deleted.

OUTPUT:
KEY2 : LISTKEY

The list of entities marked for delete.
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key, and the order of
the entities in the list may be important. KEY2 will list any
entities from the KEY1 list that were not deleted. If all
entities are deleted, the mark list will be empty.

ERRORS: Message Description

BADLIST._REFERENCE Given key not-an entity or a list.
RULEDOESNOTMATCH Rules defined incorrectly.
NOMOREROOM No more core memory.

WARNINGS: EMPTYMARKLIST No entities marked for delete.

4-25

UM 560130001
1 January 1987

FUNCTION: Delete test an entity or list of entities.

FORMAT: MAEDT(KEY1,KEY2,KEY3,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be tested.

OUTPUT:
KEY2 LISTKEY

The list containing entities that would be
deleted by MAED.

KEY3 LISTKEY
The list containing entities that would be
marked by MAED.

IRC : INTEGER
The return code.

DESCRIPTION: The MAEDT delete routine simulates the output of the MAED routine
without actually deleting the entities or marking them inactive.

ERRORS: Message Description

BADDELETEKEY Given key not an entity or a list.
RULEDOESNOTM ATCH Rules defined incorrectly.
NOMOREROOM No more core memory.

WARNINGS: EMPTYDELETELIST Given delete list was empty.
EMPTY_MARKJLIST No entities marked for delete.

4-26

UM 560130001
1 January 1987

FUNCTION: Delete test an entity or list of entities and their inclusive

constituents.

FORMAT: MAEDTI(KEY1,KEY2,KEY3,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be tested.

OUTPUT:
KEY2 LISTKEY

The list containing entities that would be
deleted by MAEDI.

KEY3 : LISTKEY
The list containing entities that would be
marked by MAEDI.

IRC : INTEGER
The return code.

DESCRIPTION: The MAEDTI delete routine simulates the output of the MAED!
routine without actually deleting the entities or rendering them
inactive.

ERRORS: Message Description

BADLISTREFERENCE Given key not an entity or a list.
BADDELETE_KEY Given key is nil.
RULE_DOES_NOT_MATCH Rules defined incorrectly.
NOMOREROOM No more core memory.

WARNINGS: EMPTY_DELETELIST Giventdelete list was empty.
EMPTYMARK.LIST No entities marked for delete.

4-27

UM 560130001
1 January 1987

MAEDTS

FUNCTION: Delete test an entity or list of entities and return three lists.

FORMAT: MAEDTS(KEY1,KEY2,KEY3,KEY4,IRC)

INPUT:
KEYl ANYKEY

The entity or list of entities to be tested.

OUTPUT:
KEY2 LISTKEY

The list of entities that would be deleted by
MAED.

KEY3 LISTKEY
The list of entities that would not be
deleted by MAED.

KEY4 LISTKEY
The list of entities that would be marked for
delete by MAED.

IRC : INTEGER
The return code.

DESCRIPTION: The MAEDTS routine is similar to MAEDT except that three lists
are returned. KEY2 and KEY4 can be submitted to directly delete
and mark entities without checking the delete rules.

ERRORS: Message Description

BADLISTREFERENCE Given key not an entity or a list.
BADDELETEKEY Given key is nil.
RULEDOES_NOT_MATCH Rules defined incorrectly.
NO_4ORE-ROOM No more core memory.

WARNINGS: EMPTYDELETELIST Given delete list was empty.
EMPTYMARKLIST No entities marked for delete.

4-28

UM 560130001

1 January 1987

4.3.5 ACTIVATE OPERATIONS

These operations are used to activate an entity. An entity is deactivated when
a delete was attempted, but was not completed because of the user's dependency
condition on the entity. (See Delete Operations Section)

The activate routines are shown in the table below.

DESCRIPTION ROUTINE

Activate an entity or list of entities. MAEA

Activate an entity or list of entities and their inclusive MAEAI
constituents.

Find the present value of the activation setting for an entity. MAEAV

o Activation is not the same as rejection after a delete. If an entity
was deleted, then it cannot be recovered with these functions.

o Activation functions will activate any entity regardless of when or
how it was made inactive.

4-29

UM 560130001
1 January 1987

FUNCTION: Activate an entity or list of entities.

FORMAT: MAEA (KEY1,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be activated.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is an
entity key then only that entity will be activated. If KEY1 is a
list key then all entities in the list will be activated.

ERRORS: Message Explanatton

BADLISTREFERENCE Given key not an entity or a list.
BAD_ENTKEY Nil key.
NOT_ENOUGHROO No more core memory.

4-30

UM 560130001
1 January 1987

MAWA

FUNCTION: Activate an entity or list of entities and their inclusive

constituents.

FORMAT: MAEAI(KEY1,IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities to be activated.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: KEYl may be either an entity key or a list key. If KEYl is an
entity key then only that entity and its inclusive constituents
will be activated. If KEYl is a list key then all entities in
the list and their inclusive constituents will be activated.

See the System Overview Section for further explanation of

inclusive constituents. -

ERRORS: Message D.ritjj.go

BADLISTREFERENCE Given key not an entity or a list.
NOTENOUGHROOM No more core memory.

4-31

UM 560130001
1 January 1987

FUNCTION: Find the present value of the activation setting for an entity.

FORMAT: MAEAV(KEYI,IAVALIRC)

INPUT:
KEY1 ENTKEY

The entity to be examined.

OUTPUT:
IAVAL INTEGER

The activation code.
- 0 if set for delete
- 1 if not set for delete

IRC : INTEGER
The return code.

DESCRIPTION: Returns the current value of the activation setting for the
specified entity.

ERRORS: Message Descrtion

BADENTKEY Given key not an entity.
NOTENOUGHROOM No more core memory.

4-32

UM 560130001
1 January 1987

4.3.6 APPLICATION FLAG OPERATIONS

These operations are used to get or set any application accessible flag
associated with an entity.

The Application Flag routines are shown in the following table.

DESCRIPTION ROUTINE

Reset any application accessible flag for all entities in MAERST
the model.

Determine the value of a given application accessible flag MAQURY
of an entity.

Update the value of a given application accessible flag of MAUPOT
an entity or list of entities.

Determine whether the user compresses with its constituent. MAECQY

Create a list of constituents with which the input entity MAECMP

compresses.

Reset Process Flag for all entities in the model. MAESWA

Set the Process Flag in an entity or list of entities. MAESWT

Find the Process Flag setting of an entity. MAESVL

4-33

UM 5601300011 January 1987

FUNCTION: Reset given application accessible flag in all entities in the

model.

FORMAT: MAERST(FLAGNAME, IRC)

INPUT:
FLAGNAME : NAMTYP

The namp of the flag to be reset in all entities
in the model. Can have the following values:

1) 'MROFLG' activation flag
2) 'PRCFLG' process flag
3) 'ABSFLG' absent/present flag
4) 'APLFLG' application flag

=0 off
-1 on

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: Determine what flag is to be reset in every entity in the model.
Resets that flag to 'off'.

ERRORS: Messaae Qsiptiol

INVALID_FLAGNAME Given flag name undefined.
SCHEMAROOTNIL No model active.
NOMOREROOM No more core memory.

4-34

UM 560130001
1 January 1987

MAOURY

FUNCTION: Determine the value of a given application accessible flag for

the entity.

FORMAT: MAQURY (KEY1, FLAGNAME, FLGVAL, IRC)

INPUT:
KEY1 ENTKEY

The entity whose specified flag value is to be
gotten.

FLAGNAME NAMTYP
The name of the flag to be gotten. Can have the
following values:

1) 'MRDFLG' activation flag
2) 'PRCFLG' process flag
3) 'ABSFLG' absent/present flag
4) 'APLFLG' application flag

-0 off
1 On

OUTPUT:
FLGVAL : INTEGER

The value of the specified flag.
0 - false
1 - true

IRC : INTEGER
The return code.

DESCRIPTION: Determine what flag's value is to be gotten. Get that flag's
value.

ERRORS: Mes sace escrin.iog

BADOJISTREFERENCE Given reference nil or not an
entity.

INVALID_FLAGNAE Given flag name undefined.
NOMOREROOM No more core memory.

4-35

UM 560130001
1 January 1987

MAUPOT

FUNCTION: Update the value of a given application accessible flag for an

entity or list of entities.

FORMAT: MAUPDT(KEY1,FLGNAME,FLGVAL, IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities whose specified
flag value will be updated.

FLAGNAME : NAMTYP
The name of the flag to be updated. Can have
the following values:

1) 'MRDFLG' activation flag
2) 'PRCFLG' process flag
3) 'ABSFLG' absent/present flag
4) 'APLFLG' application flag

-0 off
-1 on

FLGVAL INTEGER
The value of the specified flag to be used when
updating.
0 - false
1 - true

IRC INTEGER
The reutrn code.

DESCRIPTION: Determine what flag's value is to be updated. Update that flag's

value.

ERRORS: Message Descritn.tio

BADLISTREFERENCE Given key not an entity or a list.
INVALID_FLAGNAME Given flag name undefined.
NOMOREROOM No more core memory.

4-36

UM 560130001
1 January 1987

MAECOY

FUNCTION: Determine whether the user compresses with its constituent.

FORMAT: MAECQY(KEY1, KEY2, CMPFLG, IRC)

INPUT:
KEY1 : ENTKEY

Key of the entity thats constituent is to be
checked.

KEY2 : ENTKEY
Key of the constituent thats rule is to be
checked.

OUTPUT:
CMPFLG : INTEGER

Value of the user's compress rule in relation to
its constituent.
1 - true
0 - false

IRC INTEGER
Return code
0 - Good return
<0 Critical error
>0 Warning

DESCRIPTION: Query constituent compress rule to its user.

4-37

UM 560130001
1 January 1987

MAECMP

FUNCTION: Create a list of constituents with which the input entity
compresses.

FORMAT: MAECMP(KEY1, KEY2, IRC)
INPUT:

KEY1 : ENTKEY
Key of the entity thats compressibility is
determined by the constituents(s).

OUTPUT:
KEY2 : LISTKEY

List of the constiutents that cause the
compression of the input entity.

IRC INTEGER
Return code
0 - Good return
<0 Critical error
>0 Warning

DESCRIPTION: Each constituent thats delete rule states that the input entity
will also be compressed will be added to the output list.

4-38

UM 560130001

1 January 1987

MAESW

FUNCTION: Reset Process Flag for all entitles in the model.

FORMAT: MAESWA(IRC)

INPUT:
NONE

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: The Process Flag is set to OFF in all entities in the
working-form model.

ERRORS: Messaae Decriit_.9l

NOMOREROOM No more core memory.

4-39

UM 560130001

1 January 1987

MAEWI

FUNCTION: Set the Process Flag in an entity or a list of entities.

FORMAT: MAESWT(KEY1,ISWT, IRC)

INPUT:
KEY1 ANYKEY

The entity or list of entities whose process
flag is to be set.

ISWT INTEGER
The input value of the process flag.

OUTPUT:
IRC INTEGER

The return code.

DESCRIPTION: The process flag will be set to the value specified by ISWT. If
KEY1 is an entity key, then the flag in that entity will be set.
If KEY1 is a list key, then the flag in all entities referenced
by the list will be set. ISWT should be "1" for flag setting of
true and "0" for flag setting of false.

ERRORS: Message Descrtoon

BAD_LISTREFERENCE Given key not an entity or a list.
NO_MOREPOOM No more core memory.

4-40

UM 560130001
1 January 1987

MAESYL

FUNCTION: Find the Process Flag setting of an entity.

FORMAT: MAESVL(KEYI,ISET, IRC;

INPUT:
KEY1 KEY

The entity for which the flag setting is
wanted. This must be an entity key.

OUTPUT:
ISET INTEGER

The output value of the process flag.

IRC : INTEGER
The return code.

DESCRIPTION: The value of the process flag for KEY1 will be returned. If the
flag is true, then the value "1" will be returned. If the flag
is false, then the value w0" will be returned.

ERRORS: Message Oescrti&o

BADENT.KEY Given key is nil or not an entity.
NOMOREROOM No more core memory.

4-41

UN 560130001
1 January 1987

4.4 LIST OPERATIONS

This section explains the use of the HAS list operations. A list is a
temporary internal structure that contains references to entities. Since the
application can build lists that take up space in the working model, it is
necessary that the applications periodically delete the lists that are no
longer needed.

Many list operations will accept either a list key or an entity key as input
keys. When an entity key is supplied, it is assumed that the constituent list
of the entity becomes the list to be operated on.

Some operations on lists may result in the same entity being in the output list
more than once. The operation (MALRDE) can be used to remove duplicate
entities from the list.

All operations that create an application list automatically set the position
of the list to the beginning. Once a list has been read to the end, it must be
reset before the sequential read process can begin again.

When an entity is deleted, all references to it in all application lists are
automatically removed and the current positions of the affected lists are
adjusted to retain their original meaning.

The basic list operations can be categorized by the following functions:

Boolean
Structure
General
Delete
Edit
Sequential Read
Execute

Included with the list operations descriptions are the error and warning
messages that may be returned. Appendix A contains a complete list of these
messages along with their numeric codes.

4-42

UN 560130001

1 January 1987

4.4.1 BOOLEAN OPERATIONS

For Boolean operations, there are two input lists and one output list. The
application is responsible for providing two input lists consisting with the
Boolean operation to be performed. No validation checking is done. If one or
both of the input lists contain duplicate entities, then the output list may
also contain duplicate entities. This result may not be consistent with the
Boolean theory operation being performed.

The Boolean routines are shown in the following table.

DESCRIPTION ROUTINE

Create a list from a Boolean "AND" on two input lists. MALAND

Create a list from a Boolean "NOT" on two input lists. MALNOT

Create a list from a Boolean "OR" on two input lists. MALOR

4-43

UN 560130001
1 January 1987

MALAND

FUNCTION: Create a list from a Boolean OANDO on two input lists.

FORMAT: MALAND(KEY1,KEY2,KEY3,IRC)

INPUT:
KEY1 : ANYKEY

An entity or a list that is to be AND'ed.

KEY2 : ANYKEY
An entity or a list that is to be AND'ed.

OUTPUT:
KEY3 : LISTKEY

The list of entities that occurred in both KEY1 and
KEY2.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is an
entity key, then the constituent list of KEYl is AND'ed with
KEY2. If KEY1 is a list key, then KEY1 is AND'ed with KEY2.
KEY2 may be either an entity key or a list key. If KEY? is an
entity key then the constituent list of KEY2 is AND'ed with
.KEY1. If KEY2 is a list key then KEY2 is AND'ed with KEY2. The
list KEY3 is created, corresponding to the set theoretical
intersection of KEY1 and KEY?.

ERRORS: Messaae Descrintion

BAD-LIST_REFERENCE Given key(s) nil or not a list.
NOMOREROOM No more core memory.

WARNINGS: NOLISTCREATED

4-44

UN 560130001
1 January 1987

FUNCTION: Create a list from a Boolean ONOT' on two input lists.

FORMAT: NALNOT(KEY1,KEY2,KEY3,IRC)

INPUT:
KEYl : ANYKEY

An entity or a list that is to be NOT'ed.

KEY2 : ANYKEY
An entity or a list that is to be NOT'ed.

OUTPUT:
KEY3 : LISTKEY

The list of entities that occurred in KEY1 but not
in KEY2.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is an
entity key, then the constituent list of KEY1 is NOT'ed with
KEY2. If KEY1 is a list key, then KEY1 is NOT'ed with KEY2.
KEY2 may be either an entity key or a list key. If KEY2 is an
entity key, then the constituent list of KEY2 is NOT'ed with
KEY1. If KEY2 is a list key, then KEY2 is NOT'ed with KEY1. The
list KEY3 is created, corresponding to the set theoretical
difference of KEY1 and KEY2.

ERRORS: M Oescrtoo

BADISTREFERENCE Given key not an entity or a list.
BADENTKEY Given key nil.
NOMOREROON No more core memory.

WARNINGS: NOLISTCREATED

4-45

UN 560130001

1 January 1987

MALOR

FUNCTION: Create a list from a Boolean "ORO on two input lists.

FORMAT: MALOR(KEY1,KEY2,KEY3,IRC)

INPUT:
KEY1 : ANYKEY

An entity or a list that is to be OR'ed.

KEY2 : ANYKEY
An entity or a list that is to be OR'ed.

OUTPUT:
KEY3 : LISTKEY

The list of entities that occurred in either KEY1 or
KEY2.

IRC : INTEGER
The return code.

DESCRIPTION: KEYI may be either an entity key or a list key. If KEYI is an
entity key, then the constituent list of KEY! is OR'ed with
KEY2. If KEY1 is a list key, then KEY! is OR'ed with KEY2. KEY2
may be either an entity key or a list key. If KEY2 is an entity
key, then the constituent list of KEY2 is OR'ed with KEY1. If
KEY2 is a list key, then KEY2 is OR'ed with KEY1. The list KEY3
is created, corresponding to the set theoretical union of KEY1
and KEY2. If there is an entity in KEY1 that is also in KEY2,
there will be duplicates in KEY3.

ERRORS Messae •Description

BADLISTREFERENCE Given key not an entity or a list.
BADENT_KEY Given key(s) nil.
NOMORE_ROOM No more core memory.

WARNINGS: NO-LISTCREATED

4-46

UM 560130001

I January 1987

4.4.2 STRUCTURE OPERATIONS

The following table presents the structure routines:

DESCRIPTION ROUTINE

Create a list of entities with a given KIND. MALK

Create a list of entities with a given KIND that are found MALKL
within another list.

4-47

UM 560130001

1 January 1987

MALK

FUNCTION: Create a list of entitles with a given KIND.

FORMAT: NALK(KIND,KEYI,IRC)

INPUT:
KIND : INTEGER

A valid KIND code that may be either the KIND of an
entity or class of entities.

OUTPUT:
KEY1 : LISTKEY

The list of all entities of the specified KIND.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 is created. KEY1 will contain all entities of KIND. If a
data dictionary is specified, then the KIND may be a class of
enities. In this case, the elements of the list will be a
(logical) concatenation of the content of each entity class as
they are encountered from left to right in the entity class
structure.

ERRORS: Message Descriotion

CANT_-CREATEJIST Given kind undefined.
BADSCHEA_KIND Given not of an instance or class.
BADLIST_POSITION Schema root inconsistent.
NOIOREROOH No more core memory.

WARNINGS: NOSUCHSCHEMA Kind undefined.
NOLISTCREATED

4-48

UM 560130001
1 January 1987

FUNCTION: Create a list of entities with a given KIND that are found within

another list.

FORMAT: MALKL(KEYI,KIND,KEYZIRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities whose list is to be
searched for the specified KIND.

KIND : INTEGER
The KIND code of an entity or an entity class.

OUTPUT:
KEY2 : LISTKEY

The list that will ccntain all entities of the given
KIND found within the list specified by KEY1.

IRC : INTEGER
The return code.

DESCRIPTION: If KEY1 is an entity key, put all constituents of entity KEY1
into KEY2 that match on kind. If KEY! is a list key, put all
entities in the KEY1 list into KEY2 that match on kind.

ERRORS: Message

BADENTKIND No such kind.
BADLISTREFERENCE Given key nil or not an entity or

not a list.
BADLIST_POSITION Schema root inconsistent.
NOMOREROOH No more core memory.

WARNINGS: NOLISTCREATED

4-49

UM 560130001
1 January 1987

4.4.3 GENERAL OPERATIONS

The following table presents the general routines:

DESCRIPTION ROUTINE

Creates an empty list. MAL

Create an empty list of specified size. MALN

Makes a copy of a list. MALCPY

Find the position of an entity in a list. MALFND

Count the entities in a list. MALNO

Get the Nth key from a list. MALGTK

4-50

UN 560130001
1 January 1987

AL

FUNCTION: Creates an empty list.

FORMAT: MAL(KEY1,IRC)

INPUT:
None

OUTPUT:
KEYl : LISTKEY

The key of the empty list.

IRC : INTEGER
The return code.

DESCRIPTION: An empty list is created.

EXAMPLE: See Sample Programs Section.

ERRORS: Message Description

CANT_CREATELIST Memory allocation problems.
NOMOREROOM No more core memory.

4-51

UM 560130001

1 January 1987

FUNCTION: Create an empty list of specified size.

FORMAT: MALN(LSIZEKEYI,IRC)

INPUT:
LSIZE: INTEGER

The number of entries in the list.

OUTPUT:
KEY1 : LISTKEY

The key of the empty list of specified size.

IRC : INTEGER
The return code.

DESCRIPTION: An empty application list will be created with sufficient space
to accommodate LSIZE entries. All entries are initialized to
nil.

ERRORS: Messae Descriptio.n

CANTCREATELIST Memory allocation problems.
MAXIMU-LISTSIZE Requested size too large.
NO..OREROOM No more core memory.

4-52

UM 560130001
1 January 1987

FUNCTION: Makes a copy of a list.

FORMAT: MALCPY(KEY1,KEY2,IRC)

INPUT:
KEY1 : LISTKEY

A list key whose entries will be copied.

OUTPUT:
KEY2 : LISTKEY

The new list that will receive a copy of KEY1.

IRC : INTEGER
The return code.

DESCRIPTION: KEY2 will be created. The elements of KEY1 will be copied into

KEY2.

ERRORS: Message Descriotonio

BADLISTREFERENCE Given key nil or not a list.
NOORE_ROOM No more core memory.

4-53

UM 560130001

1 January 1987

MALFND

FUNCTION: Find the position of an entity in a list. If KEY1 is an entity
then find its position in the constituent list of that entity.

FORMAT: MALFND(KEY1,KEY2,IFIRST, IPOS,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities in which KEY2 is to be
found.

KEY2 : ENTKEY
The entity to be found in KEY1.

IFIRST : INTEGER
The position in KEY1 where the find operation is to
start.

OUTPUT:
IPOS : INTEGER

The position in KEY1 where KEY2 is found.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEYI is a
list then KEY2 is found in the list. If KEY1 is an entity, then
KEY2 is found in the constituent list of KEYI. KEY2 must be an
entity key. The find starts at position IFIRST. Each entity in
KEYI is examined for equality with KEY2 starting with the
specified position. If a match is found, then the position is
returned in IPOS. If there is no match, then IPOS is returned as
zero and IRC signals an error. If there are multiple matches,
then only the first (leftmost) match is retu ied in IPOS.

ERRORS: Message Descriotioa

NO.'lATCH_FOUND Entity not on list.
BADLISTREFERENCE Given key(s) not an entity or a

list.
BADENTKEY Given key(s) is nil.
NO_MOREROOM No more core memory.

4-54

UM 560130001

1 January 1987

FUNCTION: Count the entities in a list.

FORMAT: MALNO(KEY1,KOUNT,IRC)

INPUT:
KEY1 : ENTKEY

The entity or list of entities to be counted

OUTPUT:
KOUNT: INTEGER

The number of entities in the list.

IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is an
entity the number of constituents is returned. If KEY1 is a list
the number of entitias on the list is returned.

EXAMPLE: See Sample Programs Section.

ERRORS: Message

BAD LISTREFERENCE Given key(s) is nil or is not an
entity or a list.

NO-MOREROOM No more core memory.

4-55

UM 560130001
1 January 1987

MALGTK

FUNCTION: Get the Nth Key from a list.

FORMAT: MALGTK(KEYI,IPOS,KEY2,IRC)

INPUT:
KEYI : ANYKEY

The entity or list of entities to be processed.

IPOS : INTEGER
The position in the list of the target entity.

OUTPU-:
KEYZ : ENTKEY

The requested key.

IRC : INTEGER
The return code.

DESCRIPTION: If KEY1 is a list, get the IPOS entry from the list. If KEY1 is
an entity, get the IPOS entry from the constituent list of KEY1.

EXAMPLE: See Sample Programs Section

ERRORS: Message Descrtoo

BADLISTPOSITION Given position beyond the length cf
list.

BADLIST_REFERENCE Given key(s) is nil or is not an
entity or a list.

NO-MOREROOM No more core memory.

4-56

UM 56013O001

1 January 1987

4.4.4 DELETE OPERATIONS

The following table presents the delete routines:

DESCRIPTION- ROUTINE

Delete an application list. MALO

Delete all application lists. MALDA

Delete an application list and all lists created after it. MALDI

Set or unset the application list lock flag. MALOCK

4-57

UM 560130001
1 January 1987

.ALD

FUNCTION: Delete an application list.

FORMAT: MALD(KEY1,IRC)

INPUT:
KEY1 : LISTKEY

The list to be deleted.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 must not be an entity key. KEYl is deleted. KEY1 cannot be

recovered.

ERRORS: Hessaae Descrtoon.

BADDELETEKEY Given key not a root, entity, or
list.

NOMOREROOM No more core memory.

4-58

UM 560130001

1 January 1987

.ALDA

FUNCTION: Delete all application lists.

FORMAT: MALDA(IRC)

INPUT:
None

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: All application lists will be deleted. They cannot be
recovered. If an application list is locked, then it will not be
deleted.

ERRORS: Messace erinti

BADLISTPOSITION Error in processing lists.
BADLISTREFERENCE Found nil list pointer.
NO_MOREROOM No more core memory.

4-59

UN 560130001
1 January 1987

FUNCTION: Delete an application list and all lists created after it.

FORMAT: MALDI(KEYI,IRC)

INPUT:
KEY1 : LISTKEY

The list to be deleted.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 must not be an entity key. The list identified by KEY1 and
all lists created after it will be deleted. Deleted lists cannot
be recovered. If an application list is locked, then it will not
be deleted.

ERRORS: Messagerini

BADJISTPOSITION Error in processing lists.
BADLISTREFERENCE Given key is nil or not in stack of

lists or is not a list.
BADDELETELIST Given key is nil.
BADENTKEY Found a nil list.
NOMOREROOM No more core memory.

4-60

UM 560130001

1 January 1987

MALOCK

FUNCTION: Set or unset the application list lock flag.

FORMAT: MALOCK(KEY1,LOCK, IRC)

INPUT:
KEY1 : LISTKEY

The list to be set.

LOCK : INTEGER
The lock setting
-0 unlocked
-1 locked

OUTPUT:
IRC : INTEGER

The return code

DESCRIPTION: A list that is locked will not be deleted by the interface
functions MALDA or MALDI. All other functions that delete lists
will delete a locked list.

ERRORS: Message Descrition

BADLISTREFERENCE Given key is not a list or is nil.
NO_MOREROOM No more core memory.

4-61

UM 560130001

1 January 1987

4.4.5 EDIT OPERATIONS

The following table presents the edit routines:

DESCRIPTION ROUTINE

Attach an entity or list of entities to a list. MALATC

Insert an entity or list of entities into a list. MALINS

Remove duplicate entries in a list. MALRDE

Replace a list. MALREP

Remove an entity from a list. MALRMV

Reorder list of entities in user to constituent order. MALROR

Replace an entity in a list. MALRPL

Reverse the order of a list MALRVS

Sorts a list using order provided by a user defined function MALSRT

4-62

UM 560130001
1 January 1987

MALAIg

FUNCTION: Attach an entity or list of entities to a list. If KEY1 is an

entity then attach to the constituent list of that entity.

FORMAT: MALATC(KEY1,KEY2,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities to which KEYZ is to be
attached.

KEY2 : ANYKEY
The entity or list to be attached to KEY1.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is a
list, then KEY2 is attached to the list. If KEYl is an entity,
then KEY2 is attached to the constituent list of KEY1. This will
make KEY2 a constituent of KEY1. KEY2 may be either an entity
key or a list key. If KEY2 is a list, then the entire list is
attached to KEY1. This is the same as doing multiple attaches of
an entity. If KEY2 is an entity, then the entity is attached to
KEY1.

EXAMPLE: See Sample Programs Section.

ERRORS: Messaae

INVALID_CONNECTION Given key is nil.
CANT-CONNECT Given key is not an entity or list.
BADENTKEY Given key(s) is nil.
NOMOREROON No more core memory.

4-63

UM 560130001
1 January 1987

MALINS

FUNCTION: Insert an entity or list of entities into a list. If KEY1 is an

entity, then insert into the constituent list of that entity.

FORMAT: MALINS(KEY1,KEY2,IPOS,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities in which KEY2 is to be
inserted.

KEY2 : ANYKEY
The entity or list to be inserted in KEY1.

IPOS : INTEGER
The position in KEY1 where the insert is to take
place.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is a
list, then KEY2 is inserted in the list. If KEY1 is an entity,
then KEY2 is inserted in the constituent list of KEY1. KEY2 may
be either an entity key or a list key. If KEY2 is a list, then
the entire list is inserted in KEY1. If KEY2 is an entity, then
the entity is inserted in KEY1.

The insert takes place before IPOS. That is, the entity at IPOS
is moved by one position if KEY2 is an entity or by the number of
elements in the list if KEY2 is a list. Then the elements are
moved into the vacated positions.

ERRORS: Messaae Descrtoo

BADLISTPOSITION Given position less than 1 or
greater than length.

BADLISTREFERENCE Given key is nil.
INVALIDCRBPOSITION Pointer to position of last read at

constituent list is inconsistent.
CRB_POSITION_NOTFOUND No pointer to read position found.
NOOREROOM No more core memory.

4-64

UM 560130001

1 January 1987

UALR

FUNCTION: Remove duplicate entries in a list.

FORMAT: MALRDE(KEYI,IRC)

INPUT:
KEY1 : LISTKEY

The Input/output list.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: Any duplicate entitles found in the input list will be removed.
The change is made in-place. The first instance of each entity
will be kept.

ERRORS: tessage Descriotio

BAD_LISTREFERENCE Given key is not a list.
DUPL ICATESNOT-REMOVED
NOMOREROOM No more core memory.

4-65

UM 560130001

1 January 1987

MALREP

FUNCTION: Replace a list. If KEY1 is an entity then replace the
constituent list of that entity.

FORMAT: MALREP(KEY1,KEY2,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities to be replaced.

KEY2 : ANYKEY
The entity or list to replace KEY1.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is a
list then KEY2 replaces KEYl. If KEYl is an entity then the
constituent list of KEY1 is replaced by KEY2. KEYZ may be either
an entity or a lit key.

ERRORS: Message Descrgtion

BADLISTREFERENCE Given key(s) is nil or not an
entity or a list.

INVALIDCRB_POSITION Pointer to position of last read of
constituent list is inconsistent.

CRBPOSITION_NOT_FOUND No pointer to read position found.
BAOENT_KEY Given key(s) is nil.
NO_MOREROOM No more core memory.

4-66

UM 560130001
1 January 1987

MALRMV

FUNCTION: Remove an entity from a list. If KEY1 is an entity, then remove

it from the constituent list of that entity.

FORMAT: MALRMV(KEYI,IPOSIRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities from which an entity
is to be removed.

IPOS : INTEGER
The position, in the list, of the entity to be
removed.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is a
list then an entity is removed from the list. If KEYI is an
entity then an entity is removed from the constituent list of
KEY1. IPOS is the position number of the entity to be removed.
The MAS delete rules are used to see if the entity can be removed
from the constituent list.

ERRORS: Messaae Descriotion

BADLISTPOSITION Remove position - 0 or is greater
than length.

BADLISTREFERENCE Given key is not an entity or a
list.

INVALID-DELETE Delete rule prohibits delete.
INVALIDCRB_POSITION Pointer to position of last read of

constituent list is inconsistent.
CRBENTRYNOT_FOUND Pointer to read position not found.
RULEDOESNOTATCH Rules incorrectly defined.
NO-MOREROOM No more core memory.

4-67

UM 560130001
1 January 1987

MALROR

FUNCTION: Reorder a list of entities so that the users appear at the head

of the list.

FORMAT: MALROR(KEYL, IRC)

INPUT:
KEYL : LISTKEY

Key of an application list.

OUTPUT:
RC : INTEGER

Return code
0 - Good return
<0 Critical error
>0 Warning

DESCRIPTION: For each member of the list, search each of the remaining members
for its users; put users at the head of the list.

4-68

UM 560130001

1 January 1987

MALRPL
~&LSEL

FUNCTION: Replace an entity in a list. If KEY1 is an entity then replace
in the constituent list of that entity.

FORMAT: MALRPL(KEY1IKEY2,IPOS,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities in which an entity is
to be replaced.

KEY2 : ENTKEY
The entity that will replace an entity in KEY1.

IPOS : INTEGER
The position of the entity in KEY1 to be replaced.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity *key or a list key. If KEY1 is a
list, then an entity is replaced in the list. If KEYl is an
entity, then an entity is replaced in the constituent list of
KEYI. KEY2 must be an entity key. The entity at position IPOS
in KEYI will be replaced by KEYZ. If the entity being replaced
is "MARKED FOR DELETE," then an attempt is made to delete the
entity.

ERRORS: Messas Dsipto

BADLISTPOSITION Remove position - 0 or is greater
than length.

BADLISTREFERENCE Given key is not an entity or a
list.

INVALID-DELETE Delete rule prohibits delete.
INVALICRBPOSITION Pointer to position of last read of

constituent list is inconsistent.
CRB.ENTRYNOT_FOUND Pointer to read position not found.
RULEDOESNOT_MATCH Rules incorrectly defined.
NO.MOREROOM No more core memory.

4-69

UM 560130001
1 January 1987

BLmV

FUNCTION: Reverse the order of the entities in a list.

FORMAT: MALRVS(KEY1,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities in which the order of
the entities is to be reversed.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1 is a
list, then the list is reversed. If KEY1 is an entity, then the
constituent list is reversed.

ERRORS: Message Descrition

BADLISTREFERENCE Given key is nil or not an entity
or a list.

NO_MOREROOM No more core memory.

WARNING: NO_LIST..CREATED Given list is empty.

4-70

UM 560130001

1 January 1987

MALSRI

FUNCTION: Sorts an entity list using the order given in a user defined
function.

FORMAT: MALSRT(KEY1,KEY2,IRC)

INPUT:
KEY1 : ANYKEY

The list of entity or applications to be sorted.

KEY2 : The name of the user defined function for ordering
the list

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: This routine references a user defined function which provides
the order sequence to be applied to the list to be sorted.

ERRORS: Messaae Oescrjtoton

BADLISTREFERENCE Given key is nil or not an entity
or a list.

NOMORE-ROOM No more core memory.

WARNING: NOLISTCREATED Given list is empty.

4-71

UN 560130001
1 January 1987

4.4.6 SEOUENTIAL READ AND EXECUTE OPERATIONS

The following table shows routines that process a list sequentially (as if it
were a file):

DESCRIPTION ROUTINE

Read the next entry in a list. MALRD

Setup for reading in a forward direction. MALSTF

Setup for reading in reverse direction. MALSTR

Execute a procedure on an entity or a list of entities. MAEXEQ

Execute a procedure on all entities of a specified KIND. MAKXEQ

Execute a procedure on an entity or a list of entities. MALXEQ

Execute a given procedure on constituents of entity. MAECXQ

Execute a procedure on the users of an entity. MAEUXQ

The MALSTF and NALSTR set up a list for forward or re'erse reading of an
application list. Forward reading is assumed and need not be called explicitly
before a read or an execute function is used. However, after an end-of-list is
signaled, the list is disabled. An explicit setup must be done to enable the
list.

4-72

UM 560130001
1 January 1987

FUNCTION: Read the next entry in a list.

FORMAT: MALRD(KEYI,KEY2,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities to be read.

OUTPUT:
KEY2 : ENTKEY

The entity of the next list entry. Next depends on
the direction of the read set by MALSTF or MALSTR.

IRC : INTEGER
The return code.

DESCRIPTION: The next entity in the list is returned. Always set the
direction by using MALSTF or MALSTR before the first time this
routine is used to read a list.

ERRORS: Messaae

BADLISTREFERENCE Given key is nil or not an entity
or a list.

INVALIDCRB_POSITION Pointer to position of last read of
constituent list is inconsistent.

CRBENTRYNOTFOUND Pointer to read position not found.
NOOREROOM No more core memory.

4-73

UM 560130001

1 January 1987

MALSTF

FUNCTION: Setup for reading in forward direction.

FORMAT: MALSTF(KEYI,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities to be processed in a
forward direction.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: If KEY1 is an entity, then the constituent list of KEY1 will be
set up.

ERRORS: Message

BADLISTREFERENCE Given key is not an entity or a
list.

BAD_ENTKEY Given key is nil.
INVALIDCRBPOSITION Pointer to position of last read of

constituent list is inconsistent.
CRBENTRYNOTFOUND Pointer to direction of read not

found.
NO_'OREROOM No more core memory.

4-74

UN 560130001

1 January 1987

HALSTR

FUNCTION: Setup for reading in reverse direction.

FORMAT: MALSTR(KEYI,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities to be processed in the
reverse direction.

OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: If KEY1 is an 'entity then the constituent list of KEY1 will be
setup.

ERRORS: MessageQ ripi

BADLISTREFERENCE Given key is not an entity or a
list.

BAD_ENTKEY Given key is nil.
INVALIDCRBPOSITION Pointer to position of last read of

constituent list is inconsistent.
CRBENTRY_NOT_FOUND Pointer to direction of read not

found.
NOMOREROOM No more core memory.

4-75

UM 560130001
1 January 1987

The application-supplied procedure invoked by the "execute" functions must

conform to the declaration shown below:

Procedure PROC(KEY,ENTDEFDATA, IRC)

INPUT:
1) KEY is an entity key.
2) ENTDEF is the entity ADB declaration.
3) DATA is a variant data structure used as needed by the

procedure. DATA is the input data structure passed originally
to an EXECUTE function.

OUTPUT:
1) IRC is the return code produced by the "PROC".

The application procedure called from MAEXEQ and MAKXEQ have the following
return code values:

RCC >-0 and RCC <-7
processing OK

The EXECUTE routine continues processing.

RCC >-8 and RCC <-IS
procedurecodeerror

The EXECUTE routine halts processing.

RCC < 0 or RCC > 15
procedureoutof'jange

The EXECUTE routine halts processing.

The application procedure called from MALXEQ has the following return code
values:

RCC- 0 or RCC- 1
processing OK

The EXECUTE routine adds an entity to the output list and
continues processing.

RCC >-2 and RCC <-7
procedure.warningcode

The EXECUTE routine continues processing.

RCC >-8 and RCC <-15
procedurecodeerror.

The EXECUTE routine halts processing.

4-76

UN 560130001
1 January 1987

FUNCTION: Execute a procedure on a entity or a list of entities.

FORMAT: MAEXEQ(KEY1,DATA,PROC,RCC,IRC)

INPUT:
KEY1 : ANYKEY

The entity or lst of entities on which the
application procedure should be performed.

DATA : VARIANT
The application defined data structure which either
supplies or receives the values operated on by the
application defined procedure.

PROC : ENTRY POINT
The entry point of an application defined procedure.

OUTPUT:
RCC : INTEGER

The procedure PROC return code.

IRC : INTEGER
The MAS return code.

DESCRIPTION: The entity, or each entity in a list, is passed to the
application-defined procedure. The operation performed on the
entity is determined by the application-defined procedure.

EXAMPLE: See Sample Programs Section.

ERRORS: Messaae ripti

BAD_LISTREFERENCE Given key is nil or not an entity
or a list.

PROCCODE_ERROR
PROCOUTOFRANGE Return error code greater than 15.
NO_MOREROOM No more core memory.

4-77

UM 560130001

1 January 1987

MAKXEO

FUNCTION: Execute a procedure on all entities of a specified kind.

FORMAT: MAKXEQ(KIND,DATA,PROC,RCC, IRC)

INPUT:
KIND : INTEGER

The KIND value of the entities to be processed.

DATA : VARIANT
The application-defined data structure, which either
supplies or receives the values operated on by the
application-defined procedure.

PROC : ENTRY POINT
The entry point of an application-defined procedure.

OUTPUT:
RCC : INTEGER

The procedure PROC return code.

IRC : INTEGER
The MAS return code.

DESCRIPTION: Each entity of the specified kind is passed to the
application-defined procedure. The operation performed on the
entity is determined by the application-defined procedure.

ERRORS: Message Descrtioton

BAD..LISTPOSITION Schema inconsistent.
PROCCODEERROR
PROCOUTOFRANGE Returned error cede greater than

15.
NO_MOREROOM No more core memory.

WARNING: NOSUCHSCHEMA No definition for given kind.

4-78

UM 560130001

1 January 1987

MALXEO

FUNCTION: Execute a procedure on a entity or a list of entities. Construct
an output list of entities as determined by the application
procedure.

FORMAT: MALXEQ(KEY1,DATA,PROC,KEYZ,RCC,IRC)

INPUT:
KEY1 : ANYKEY

The entity or list of entities to be processed.

DATA : VARIANT
The application-defined data structure, which either
supplies or receives the values operated on by the
application-defined procedure.

PROC : ENTRY POINT
The entry point of an application-defined procedure.

OUTPUT:
KEY2 : LISTKEY

The list created by this function.

RCC : INTEGER
The procedure PROC return code.

IRC : INTEGER
The return code produced by this operation.

DESCRIPTION: An empty list (KEY2) is created. The entity, or each entity in
sequence if a list is supplied, is passed to the
application-defined procedure. The operation performed on the
entity is determined by the application-defined procedure. When
the application return code of "success," (0 or 1), is returned
from the application procedure, the entity just processed is
added to the result list. When an application error return code
(less than 0 or greater than 7) is returned from the application
procedure, MALXEQ is terminated. When an application warning
return code (2 through 7) is returned from the application
procedure, the entity just processed is not placed on the result
list, but processing continues.

4-79

UM 560130001

1 January 1987

•ALXEO (Cont.)

ERRORS: Message Oescrtton

BADLISTREFERENCE Given key is not an entity or a
lst.

BADENTKEY Given key is nil.
PROCCODEERROR
PROCOUTOFRANGE Returned error code greater than

15.
INVALIDCRBPOSITION Pointer to position of read of the

constituent list inconsistent.
CRB_POSNOTjOUND Pointer to position of read not

found.
NOMORE_ROOM No more core memory.

WARNING: PROCJARNING.CODE
NO_LISTCREATED No entities executed sucessfully.

4-80

UM 560130001
1 January 1987

MAECXO

FUNCTION: Given a user-defined procedure, perform this procedure on the

constituents of an entity or list of entities.

FORMAT: MAECXQ(KEY1, DATAREC, PROCNN, KEY2, RRC, IRC)

INPUT:
KEY1 : ANYKEY

Key of an entity or an application list thats
constituent(s) are to be processed.

DATAREC : BLKDATA
Data to be supplied to the procedure.

PROCNM : ROUTINE
Routine supplied by caller that processes one
entity at a time.

OUTPUT:
KEY2 : LISTKEY

Key to the list of constituents that processed
without error.

RRC : INTEGER
Return code of the user-defined procedure.

IRC : INTEGER
Return code
0 - Good return
<0 Critical error
>0 Warning

DESCRIPTION: For each constituent of an entity read from the position and in
the direction indicated in its user constituent list, process by
the user-defined procedure. For each entity processed without
error, add to the output list.

4-81

UM 560130001

1 January 1987

FUNCTION: Given a user-defined procedure, perform this procedure on the

users of an entity or list of entities.

FORMAT: MAEUXQ(KEY1, DATAREC, PROCNM, KEY2, RRC, IRC)

INPUT:
KEY1 : ANYKEY

Key of an entity or an application list thats
user(s) are to be processed.

DATAREC : BLKDATA
Data to be supplied to the procedure.

PROCNM : ROUTINE
Routine supplied by the caller that processes one
entity at a time.

OUTPUT:
KEY2 : LISTKEY

Key to the list of users that processed without
error.

RCC : INTEGER
Return code of the user-defined procedure.

IRC : INTEGER
Return code
0 - Good return
<0 Critical error
>0 Warning

DESCRIPTION: For each user of an entity or an entity on the list of entities,
process by the user-defined procedure. For each user processed
without error, add to the output list.

4-82

UM 560130001
1 January 1987

GENERAL UTILITIES

This section contains descriptions of available general utility routines, as
shown in the table below.

DESCRIPTION ROUTINE

Get number of different KIND values in the working-form MAECTK
model.

Get KIND value stored at specific position in KIND list. MAEKND

Determine if an entity has any users. MAEUSR

Get actual model space used and amount of model free MASMSZ
space.

Determine the number of entities in the model of a MAKCNT
specified KIND.

5-1

UM 560130001

1 January 1987

MAECTK

FUNCTION: Get the number of different KIND values in the working-form
model.

FORMAT: MAECTK(KNDCNT, IRC)

INPUT:
NONE

OUTPUT:
KNDCNT: INTEGER

The number of different KIND values in the
working-form model.

IRC : INTEGER
The return code.

DESCRIPTION: Get the number of KIND values in the working-form .model from the
KIND list.

NOTE: Works in conjunction with MAEKND.

5-2

UN 560130001
1 January 1987

MAEKND

FUNCTION: Get KIND value at specified-position in the KIND list.

FORMAT: MAEKND(KNDPOS,KNDVAL, IRC)

INPUT:
KNDPOS: INTEGER

The position in the standard array of where to get
the KIND value

OUTPUT:
KNDVAL: INTEGER

The KIND value retrieved from the KIND list

IRC : INTEGER
The return code.

DESCRIPTION: Get the KIND value at KNDPOS in the KIND list.

NOTE: Works in conjunction with MAECTK.

5-3

UM 560130001
1 January 1987

MAEUSR

FUNCTION: Determine if an entity has any users.

FORMAT: MAEUSR(KEY1,UEXIST,IRC)

INPUT:
KEY1 : ENTKEY

The entity whose user existence is to be determined.

OUTPUT:
UEXIST: INTEGER

The value indicating if the entity has users or not.
-0 No users exist
-1 Users exist

IRC : INTEGER
The return code.

DESCRIPTION: Determines if an entity has any users.

5-4

UM 560130001
1 January 1987

FUNCTION: Determine actual model used space and model free space (in

bytes).

FORMAT: MASMSZ(MODSIZ,FRESIZ,IRC)

OUTPUT:
MODSIZ : INTEGER

The total number of bytes used by the model.

FRESIZ : INTEGER
The total number of bytes of free space.

IRC : INTEGER
The return code.

DESCRIPTION: The used model space is calculated by taking the difference of
allocated model space and free model space. This routine can
only be used where the MAS memory manager is used.

5-5

UM 560130001

1 January 1987

MAKCNT

FUNCTION: Determine the number of entities in the model of a specified
KIND.

FORMAT: MAKCNT(KIND,COUNT, IRC)

INPUT:
KIND : INTEGER

The KIND value for which a count is to be
determined.

OUTPUT:
COUNT : INTEGER

The number of entities in the model of the
specified KIND.

IRC : INTEGER
The return code.

DESCRIPTION: If the KIND specified is in the model, determine the number of
entities with that KIND.

5-6

UM 560130001
1 January 1987

SAMPLE PROGRAMS

The following pages illustrate uses of the Access Software. These examples
show Create and Get operations for a line.

DESCRIPTION MAS ROUTINES USED

Create a Line MAL, MALATC, MAECR, MALD

Get Constituents MALNO, MALGTK

Get Users MAEU, MALNO, MALGTK

6-1

UM 560130001
I January 1987

Une
Got Users

VA
am=:

QVUWJin USIEN;

r UM IST-)

toi off jin "M up*)
MAMi (UYLNWuL YlblUQ.

M T OM uMFTII

UDT.JflU. UELwU + 1;

NOS;

6-2

UM 560130001
1 January 1987

Une
Got Constituents

311W allow*;

uV0U* mm IN

r OMUMU:WO

Ur LNIU : Iwo

r nui Touu in An1

MWS p MJP51WUA MCI

UGRA M~W~US1W~E6-3~

UM 560130001

1 January 1987

Une
WM,,.D4C U, Create an Entity

tt KmM
Ssum eM
yiSM a

ISaM~ 6M

I12) me

s"m

C
C LA van a V? up
C

CmL IN (LISTC.m
U.III . 9oo1 O IN

C
C CAII1 cOIETITIIT US OF LI

C €w I T - IM s
CALL IWNTM0.JNl C

C
t CHEATI A LIM MMIT

C16 CL *ML LIS. e. 6 lo

C
C osLISTlo

CL wMLIST.EC
C

6-4

UM 560130001

1 January 1987

INTRODUCTION

Valuable supplementary information not included earlier in this manual is
included in this section.

Page

A ACCESS SOFTWARE CALLING PARAMETER INDEX A-i

B ALPHABETICAL ACCESS SOFTWARE ROUTINE INDEX B-I

C ACCESS SOFTWARE RETURN CODE INDEX C-1

D ACCESS SOFTWARE FORTRAN SCHEMA DIAGRAM D-1

E ACCESS SOFTWARE PASCAL SCHEMA DIAGRAM E-1

F GENERAL TECHNIQUES/GUIDELINES F-1

G RUN-TIME ENVIRONMENT G-1
INTRODUCTION.. . G-
INTERLANGUAGE CONVENTIONS G-2
ESTABLISHING INTERLANGUAGE ENVIRONMENT G-3
REGISTER CONVENTIONS G-5
PASCAL DYNAMIC STORAGE AREA..... G-6
EXAMPLES G-8

H ERROR AND WARNING RETURN CODE INDEX H-I

APP

UN 560130001

1 January 1987

ACCESS SOFTWARE CALLING PARAMETER INDEX

Routine Descriotion and callino seouence Paae
MAINIT Initialize the working-form model 4-5

MAINIT (extretcode)
MAKILL Delete the current working-form model 4-6

MAKILL (extretcode)
MAECR Create an entity 4-9

MAECR (entblock, anykey, entkey, extretcode)
MAEC Create list of constituents 4-10

MAEC (anykey, listkey, ext_retcode)
MAECI Create list of inclusive constituents 4-11

MAECI (anykey, listkey, ext-ret-code)
MAECIK Create list of inclusive constituents by kind 4-12

MAECIK (anykey, ord_kind, listkey, ext_ret..code)
MAEU Create list of users 4-13

MAEU (anykey, listkey, ext_retcode)
MAEUI Create list of users inclusively 4-14

MAEUI (anykey, listkey, extretcode)
MAEUIK Create list of users inclusively by kind 4-15

MAEUIK (anykey, ord_kind, listkey, extretcode)
MAEGKN Get kind value of an entity 4-17

MAEGKN (entkey, integer, extretcode)
MAEGTK Get entity ADB 4-18

MAEGTK (entkey, entblock, extretcode)
MAEUD Update the ADB 4-20

MAEUO (entkey, entdef, ext..retcode)
MAED Delete an entity or list of entities 4-24

MAED (anykey, listkey, extret.code)
MAEDI Delete an entity or list of entities inclusively 4-25

MAEDI (anykey, listkey, extretcode)
MAEDT Delete test an entity or list of entities 4-26

MAEDT (anykey, listkey, listkey, ext-ret-code)
MAEDTI Delete test an entity or list of entities inclusively 4-27

MAEDTI (anykey, listkey, listkey, extretcode)
MAEDTS Delete test an entity or list of entities 4-28

(output - 3 lists)
MAEDTS (anykey, listkey, listkey, listkey, extret_code)

MAEA Activate an entity or list of entities 4-30
MAEA (anykey, ext.retcode)

MAEAI Activate an entity or list of entities inclusively 4-31
MAEAI (anykey, ext-retcode)

MAEAV Find value of entity activation setting 4-32
MAEAV (entkey, integer, extretcode)

A-i

UM 560130001
1 January 1987

ACCESS SOFTWARE CALLING PARAMETER INDEX

Routine Descriotion and calling seauence Paae
MAERST Set application flag in all entities in model to Noff" 4-34

MAERST (namtyp, ext_retcode)
NAQURY Determine value of application flag of the entity 4-35

MAQURY (entkey, namtyp, integer, ext-.retcode)
MAUPOT Update value of application flag of entity or 4-36

list of entities
MAUPDT (anykey, namtyp, integer, ext.retcode)

MAECQY Determine whether the user compresses with its 4-37
constituent
MAECQY (entkey, entkey, integer, ext_.ret,_code)

MAECMP Create a list of constituents which compress with the 4-38
input entity
MAECMP (entkey, listkey, ext_ret..code)

MAESWA Set all entities binary switch setting to "off" 4-39
MAESWA (extret_code)

MAESWT Set binary switch in an entity or list of entities 4-40
MAESWT (anykey, integer, ext_retcode)

MAESVL Find binary switch setting of an entity 4-41
MAESVL (entkey, integer, extretcode)

MALAND "AndO of two lists 4-44
MALAND (anykey, anykey, listkey, ext,.retcode)

MALNOT "Not' of two lists 4-45
MALNOT (anykey, anykey, listkey, extretcode)

MALOR "Orw of two lists 4-46
MALOR (anykey, anykey, listkey, extretcode)

MALK Create list of an entities of specified kind 4-48
MALK (ord_kind, ltstkey, extretcode)

MALKL Create list of an entities of specified kind which are 4-49
found within another list
MALKL (anykey, ord kind, listkey, extjret code)

HAL Create an empty list 4-51
AL (listkey, ext-ret-code)

MALN Create an empty list of specified size 4-52
MALN (integer, listkey, extret.code)

MALCPY Make a copy of a list 4-53
MALCPY (listkey, lstkey, extretcode)

MALFND Find position of an entity in a list 4-54
MALFND (anykey, entkey, integer, integer, ext ret code)

MALNO Count entities in a list 4-55
MALNO (anykey, integer, ext-ret-code)

MALGTK Get the Nth entity from a list 4-56
MALGTK (anykey, integer, entkey, ext-ret_code)

A-2

UN 560130001

1 January 1987

ACCESS SOFTWARE CALLING PARAMETER INDEX

Routine Oescriotton and callina seauence Page
HALO Delete a list 4-58

MALD (listkey, extretcode)
MALDA Delete all lists in working-form model 4-59

MALDA (extretcode)
HALOI Delete alist and all lists after it 4-60

MALD! (anykey, ext_.retcode)
MALOCK Set the list lock flag 4-61

MALOCK (listkey, integer, extretcode)

MALATC Attach entity or list of entities to entity or list 4-63
MALATC (anykey, anykey, ext-ret-code)

MALINS Insert entity or list of entities into a list 4-64
MALINS (anykey, anykey, integer, ext-retcode)

MALRDE Remove duplicate entities from list 4-65
MALRDE (listkey, ext_retcode)

MALREP Replace a list of entities 4-66
MALREP (anykey, anykey, extretcode)

MALRHV Remove entity or list of entities 4-67
MALRV (anykey, integer, extretcode)

MALROR Reorder a list of entities so that the users appear
at the head of the list 4-68
MALROR (listkey, extret-code)

MALRPL Replace an entity 4-69
MALRPL (anykey, entkey, integer, ext..retcode)

MALRVS Reverse order of list 4-70
MALRVS (anykey, extretcode)

MALSRT Sorts an entity list using a user defined function 4-71
MALSRT (anykey, routine, extretcode)

MALRD Read next entity in list 4-73
MALRD (anykey, entkey, extretcode)

MALSTF Set flag to read in forward direction 4-74
MALSTF (anykey, ext..retcode)

MALSTR Set flag to read in reverse direction 4-75
MALSTR (anykey, extretcode)

MAEXEQ Execute procedure on an entity or list of entities 4-77
MAEXEQ (anykey, blkdata, routine, extretcode, extretcode)

MAKXEQ Execute procedure on all entities of specified kind 4-78
MAKXEQ (anykey, blkdata, routine, extretcode, ext_retcode)

MALXEQ Execute procedure on entity or list of entities 4-79
MALXEQ (anykey, blkdata, routine, listkey, extretcode,

extret_code)
MAECXQ Perform this procedure on the constituents of an entity 4-81

or list of entities, given a user defined function
MAECXQ (

NAEUXQ Perform this procedure on the users of an entity or 4-82
list of entities, given a user defined function

A-3

UM 560130001

1 January 1987

ACCESS SOFTWARE CALLING PARAMETER INDEX

Routine Description and callina seauence Paae
MAECTK Get number of different kinds in working-form model 5-?

MAECTK (integer, ext-retcode)
MAEKND Get kind value at specified position in kind list 5-3

MAEKND (integer, ord-kind, extretcode)
MAEUSR Determine if an entity has any users 5-4

MAEUSR (entkey, integer, extretcode)
MASMSZ Find actual model used space and model free space 5-5

MASMSZ (integer, integer, extretcode)
MAKCNT Determine number of entities in model of specified kind 5-6

MAKCNT (integer, integer, ext ret code)

A-4

UN 560130001

1 January 1987

ALPHABETICAL ACCESS SOFTWARE ROUTINE INDEX

Routine Descrittion Page
MAEA Activate an entity or list of entities 4-30
MAEAI Activate an entity or list of entities inclusively 4-31
MAEAV Find value of entity activation setting 4-32
AEC Create list of constituents 4-10
MAECI Create list of inclusive constituents 4-11
MAECIK Create list of inclusive constituents by kind 4-12
MAECR Create an entity 4-9
MAECMP Create a list of constituents with which the input 4-38

entity compresses
MAECTK Get number of different kinds in working-form model 5-2
MAECQY Determine whether the user compresses with its 4-37

constituent
MAECXQ Given a user-defined procedure, perform this procedure 4-81

on the constituents of an entity or list of entities
MAED Delete an entity or list of entities 4-24
MAEDI Delete an entity or list of entities inclusively 4-25
MAEDT Delete test an entity or list of entities 4-26
MAEDTI Delete test an entity or list of entities inclusively 4-27
MAEDTS Delete test an entity or list of entities 4-28

(output - 3 lists)
MAEGKN Get kind value of an entity 4-17
MAEGTK Get entity ADS 4-18
MAEKND Get kind value at specified position in kind list 5-3
MAERST Set application flag in all entities in model to "off" 4-34
MAESVL Find binary switch setting of an entity 4-41
MAESWA Set all entities binary switch setting to "off" 4-39
MAESWT Set binary switch in an entity or list of entities 4-40
MAEU Create list of users 4-13
MAEUD Update entity ADS 4-20
MAEUI Create list of users inclusively 4-14
MAEUIK Create list of users inclusively by kind 4-15
MAEUSR Determine if an entity has any users 5-4
MAEUXQ Given a user-defined procedure, perform this procedure 4-82

on the users of an entity or list of entities
MAEXEQ Execute procedure on an entity or list of entities 4-77
MAINIT Initialize the working-form model 4-5
MAKCNT Determine number of entiti.es in model with specified kind 5-6
MAKILL Delete the current working-form model 4-6
MAKXEQ Execute procedure on all entities of specified kind 4-78
MAL Create an empty list 4-51
MALAND "And" of two list 4-44
MALATC Attach entity or list of entities to entity or list 4-63
MALCPY Make a copy of a list 4-53
MALD Delete a list 4-58
MALDA Delete all lists in the working-form model 4-59
MALDI Delete a list and all lists after it 4-60

8-1

UM 560130001

I January 1987

ALPHABETICAL ACCESS SOFTWARE ROUTINE INDEX

Routine Descrintion Pace
MALFND Find position of an entity in a list 4-54
MALGTK Got the Nth entity from a list 4-56
MALINS Insert entity or list of entities into a list 4-64
MALK Create list of an entities of specified kind 4-48
MALKL Create list of an entities of specified kind which 4-49

are found within another list
MALN Create an empty list of specified size 4-52
MALNO Count entities in a list 4-55
MALNOT "Not" of two lists 4-45
MALOCK Set the list lock flag 4-61
MALOR "Or" of two lists 4-46
MALRD Read next entry in list 4-73
MALRDE Remove duplicate entities from list 4-65
MALREP Replace list of entities 4-66
MALR4V Remove entity or list of entities 4-67
MALROR Reorder a list of entities so that the users appear 4-68

at the head of the list
MALRPL Replace entity or list of entities 4-69
MALRVS Reverse the order of a list 4-70
MALSRT Sorts an entity list using a user defined function 4-71
MALSTF Set flag to read in forward direction 4-74
MALSTR Set flag to read in reverse direction 4-75
MALXEQ Execute procedure on entity or list of entities 4-79
MAQURY Determine value of application flag for given entity 4-35
MASMSZ Find actual model used space and model free space 5-5
MAUPDT Update value of application flag of entity or 4-36

list of entities

B-2

UM 560130001

1 January 1987

ACCESS SOFTWARE RETURN CODE INDEX

Error type
NO_.ERRORS...DETECTED 0
BAD...EN-KIND 1I
INVALID_.CREATE 2
CANT-REATE..LIST 3
MAS-NIT..AILED 4
INVALIDUPOATE 5
CANTj)POATEENT 6
CANT..CREATE..ENT 7
CANTJVERI FY_.CONNECT 8
INVAL ID_.CONNECTION 9
CANT_.CONNECT 10
ABSENT INPUT 11
INVALID..GET 12
NDS...OP.COMPLETE 13
BADJ..IST POSITION 14
MAXIMU'LLIS...SIZE 15
BAD.L I ST...MOVECOUNT 16
BAD-.L IST_.REFERENCE 17
BAD..ENT..EY 18
DUPLICATE..SCH 19
DUMP-.ERROR 20
BAD..ENT.SIZE 21
BAD...SCHKIND 22
PROC_.CODE..ERROR 23
PROC..OUT0F..RANGE 24
NO-MATCHJOUND 25
DUPSJ4OT..REMOVED 26
INVALID-.DELETE 27
BAD..ENT ITY_..NSER1 1ST 28
BAD_.DELETEJ.EY 29
EMPTYMODEL 30
ARG-..UL..OF..RANGE 31
INVALID_.CRBPOSITION 32
CRB_.ENTRY...NOTFOUND 33
INVALID_FLAG_.NAI4E 34
CANT_ RK...ENTITYOELETE 35
SI ZE_.NOT..CAREENOUGH 36
RTSNOT_ N_.WORKINGJORM 37
CORE-.NOT..AVAI LABLE 38
NOT...ENOUGHCOREORNIT 39
ABSOLUTELYNOMORECORE 40

C-1

UM 560130001
1 January 1987

ACCESS SOFTWARE RETURN CODE INDEX

0KW 0
NOSUCH.SCH -1
PROCWARN ING..CODE -2
EMPTY__DELETE..LIST -3
EMPTY-EXCEPTION..LIST -4
END.0F..LIST -5
NO.L ISL.CREATED -6
EMPTYJ4ARKLIST -7

C-2

UM 560130001
1 January 1987

ACCESS SOFTWARE FORTRAN SCHEMA DIAGRAM

FORTRAN
APPLICATION

PROGRAM
A

COMMANDS DATA

IF
Model Access Software

INTERFACE
ROUTINI S

CONCEPTUAL SCHEMA DATA STRUCTURES

FEATURES DETAIL TOLERANCES GEOMETRY TOPOLOGY
PART

D-1

UM 560130001
1 January 1987

ACCESS SOFTWARE PASCAL SCHEMA DIAGRAM

PASCAL
APPLICATION

PROGRAM

COMMANDS - DATA

L ACCESS SOFTWARE
INTERFACERUTINE

CONCEPTUAL SCHEMA DATA STRUCTURES

FEATURES DETAIL TOLERANCES GEOMETRY TOPOLOGY
PART

E-1

UM 560130001

1 January 1987

GENERAL TECHNIOUES/GUIDELINES

o Avoid creating long lists of entities:
-Lists are processed sequentially
-Lists use model space

o Do not use ENTKEY as a memory address:
-ENTKEY does not address the attribute data block of the entity

o Avoid 'nil" keys:
-Abend or nil pointer checking errors may be caused

o Delete application lists when no longer needed:
-Application lists use memory
-Application lists slow deletion of entities

o Always test the MAS interface return code:
-RC - 0 normal return
-RC < 0 warning message
-RC > 0 critical error

o Reset the process bit to "off" when it is no longer needed.

o Define the KIND and LENGTH fields in the ADB.

o When MALRD is used in conjunction with one -of the following interface
routines:

MAED MALINS
MAEDI MALRMV
MAL

the position of sequential reading is incremented/decremented if an
interface function modifies the list.

Do not use MALGTK and one of the above routines because the local variable
position cannot be adjusted by the MAS package.

F-I

UM 560130001
1 January 1987

For example:

VAR NUM.IN_LIST: - INTEGER

BEGIN

FOR I - 1 TO NUM_INLIST DO

MALGTK (LISTKEY, NUM_INLIST, ENTKEY1):

MAED (ENTKEY1, LISTX):

END:

As each entity is deleted, it is removed from the LISTKEY list, but I
is not adjusted.

o W'tn the exception of MAL and MALK, empty lists will not be created. If an
interface function has an output LISTKEY and the list is empty, the list
will not be created and the LISTKEY will be NIL. A warning return code
will indicate this situation.

F-2

UM 560130001

1 January 1987

RUN-TIME ENVIRONMENT

INTRODUCTION

The Access Software consists of a set of Pascal procedures that provides an
interface to the working form model for application programs. When the
application programs are written in a language other than Pascal, the run-time
environment must satisfy the interlanguage communication requirements of all
the languages involved. This appendix discusses the MAS interlanguage
environment conventions and the composition of the Pascal dynamic storage
areas. Examples are given for a FORTRAN program that uses MAS routines.

G-1

f UM 560130001
1 January 1987

INTERLANGUAGE CONVENTIONS

When the MAS subprograms were compiled, they were defined as PROCEDUREs using
SUBPROGRAM declarations. The subprogram declaration is an extension to IBM
Pascal that allows a Pascal procedure to be called from any language. The
subprogram declaration supplies special code at compile time. At run-time,
this code determines the nature of the calling program. For non-Pascal calls,
two macros are invoked: Prolog and Epilog. Before the procedure executes,
Prolog locates the Pascal Communication Work Area (PCWA) as well as the main
and local Dynamic Storage Areas (DSA) and establishes the Pascal register
conventions. On exit, the Epilog macro restores the register conventions of
the calling program.

The effect of this method is that no special action is required by the calling
program, regardless of its language.

The SUBPROGRAM declaration may also be applied to application procedures, which
may then be called from, and make calls to, routines of any language. This
method is limited to Pascal PROCEDURES and does not apply to Pascal FUNCTIONS.

G-2

UM 560130001
1 January 1987

ESTABLISHING INTERLANGUAGE ENVIRONMENT

The preferred (and easiest) approach is to insert the entire application into a
Pascal program. This method assures correct error handling.

Pas

FORTRAN

HAS

I FORTRAN

Figure G-1

G-3

UM 560130001
1 January 1987

An alternate approach is to insert the portion of the application that makes
the MAS calls into a Pascal procedure that is declared MAIN. The error
handling capability, however, may be limited in this method. Note that the
model created within the scope of the MAIN Pascal procedure is active only
during the execution of the MAIN procedure; new models may be created in
subsequent calls to a similarly declared MAIN procedure. Upon termination of
the last call to a Pascal MAIN, the procedure PSCLHX should be called to
terminate the Pascal run-time environment.

FORTRAN

MAN

FORTRAN

HASI

FORTRAN

PSCLMX'

Figure G-2

Examples of the Pascal source and link-edit instructions are included at the
end of this appendix.

G-4

UM 560130001
1 January 1987

REGISTER CONVENTIONS

The interlanguage environment establishes the correct register conventions
automatically. The following information is included for use from the IBM TEST
mode.

Register c Non-Pascal

15 Branch address Branch address
14 Return address Return address
13 Local DSA address (1) Save area address
12 PCWA address
11 Main DSA address
1 Address of parameter Address of parameter

list (2) (3) list
0 (2) Function value

NOTES: (1) The save area is the first entry in the local OSA, which is
established by a Pascal caller.

(2) The function value for Pascal is referred to by the first entry
in the parameter list. Pascal input parameters for a function
are referred to as starting with the second entry in the
parameter list.

(3) The parameter list contains addresses of parameters except for
pass-by-value of scalars, pointers, or sets, in which case the
parameter list contains the actual value.

G-5

UM 560130001
1 January 1987

PASCAL DYNAMIC STORAGE AREA

The dynamic storage area of the Pascal main program contains global variables
(including any commons). Each Pascal procedure invoked has a local dynamic
storage area containing local variables. The dynamic storage areas are
contained in a LIFO stack.

In general, the DSA of a routine consists of five sections:

(1) The local save area (144).

(2) Parameters passed in by the caller.

(3) Local variables required by the routine.

(4) A save area required by any routine that will be called.

(5) Storage for the largest parameter list to be built for a call.

Sections I and 2 are allocated by the calling routine; Sections 3, 4, and 5 are
allocated by the Prolog of the called routine.

Every DSA is at least 144 bytes long. This is the storage required by
Pascal/VS for a save area. The local variables and parameters of the routine
are mapped within the DSA starting at offset 144.

Upon entering a routine, Register 1 points 144 bytes into the DSA of the
routine, which is where the parameters passed in by the caller reside.

Upon invocation, Register 13 points to the base of the DSA of the caller, which
is where the save area of the caller is located. Figure 3 illustrates the
condition of the stack and relevant registers immediately upon the start of the
routine.

G-6

UN 560130001

1 January 1987

1I I
REG 13 --- • Start of DSA of caller

Caller's save area

Caller's
local variables

To replace --- • 2.Start of DSA of called
G 13 Loaroutine

Local save area

(144 bytes)

REG I Param144-bytes Into DSAI I Parameters

Top of stack ------

----- ------ -w --- Storage not yet to be
allocated

Local variables

Start of DSA of routine yet
Save area to be called

of say routines
yet to be Invoked

REG I - - - ft.--.--.-..---..... 144 bytes Into this DSA
set here Parameter list to
for calls be built for calls

to other routines

Next stack top ------ 3oeeeeeeeeeeeeeeeeee

Figure G-3

G-7

UM 560130001

1 January 1987

EXAMPLE 1: PASCAL PROGRAM (PASMAIN) THAT INVOKES FORTRAN MAIN

PASCAL PROGRAM

PROGRAM PASMAIN;
PROCEDURE MAIN; FORTRAN;
BEGIN
MAIN; Invoke FORTRAN main.
END.

LINKEDIT INSTRUCTIONS
INCLUDE APLLIB(PASMAIN)
INCLUDE APLLIB(APL) FORTRAN main object,

list of objects including FORTRAN main,
or LOAD module including FORTRAN main.INCLUDE ASLIB(AS)

ENTRY PASMAIN

where SYSLIB allocation includes SYS1.PASCLIB.

G-8

UM 560130001
1 January 1987

EXAMPLE 2: PASCAL PROCEDURE (PASSUB) INVOKED BY FORTRAN MAIN THAT INVOKES
FORTRAN SUBROUTINE (FORSUB)

PASCAL PROCEDURE
SEGMENT PASSUB;
PROCEDURE PASSUB (....);MAIN; FORTRAN MAIN may pass parameters to the

PASCAL subroutine.
PROCEDURE PASSUB;
PROCEDURE FORSUB(....);FORTRAN; PASCAL MAIN may pass parameters to the

FORTRAN MAIN.
BEGIN
FORSUB(....); Invokes FORTRAN subroutine that calls

MAS.
end;

FORTRAN MAIN PROGRAM

CALL PASSUB(....)
CALL PSCLHX

LINKEDIT INSTRUCTIONS

INCLUDE APLLIB(APL) List of objects Including FORTRAN MAIN
or LOAD module including FORTRAN MAIN.

INCIJDE APLLIB(PASSUB)
INLLUDE MASLIB(MAS)
ENTRY APLNAME APL

where SYSLIB allocation includes SYSI.PASCLIB.

G-9

UM 560130001

1 January 1987

MAS ERROR AND WARNING RETURN CODE INDEX

ERROR TYPE CODE ERROR TYPE CODE

NO-.ERRORSDETECTED 0 ABSOLUTELY-40-M)ORE-.CORE 40
8ADJNTJ(IND 1 MA 1NIT-ALREADY-DONE 41
INVALIDCREATE 2 RULE..DOES-NOTJIMATCH 42
CANT...CREATE-LIST 3 ENTITYNOTFOUND-L ST 43
MASJTNITFAILED 4
INVALID-UPDATE 5____________________
CANT -UPDATEENT 6 WARNING TYPE CODE
CANTCSREATEENT 7____________________
CANTVERI FYCONNECT 8
INVALIDLCONNECTION 9 0KW 0
CANT..CONNECT 10 NO..SUCHSCH -1
ASSENTINPUT 11 PROCWARNINGCODE -2
INVALIDLGET 12 EMPTY.DELETELIST -3
NDS_..OP..COMPLETE 13 EMPTYEXCEPTION LIST -4
BAD...ISTPOSITION 14 END...FLIST -- 5
MAXIMUM-LIST-SIZE is NOLIST.CREATED -6
BADJ..ISTOVECOUNT 16 EMPTYMARKLIST -7
BAD..LIST...REFERENCE 17 EMPTYMARKJ(_EXCEPTION -8
BADENTKEY 18 EMPTY_)ELETEJ(NEXCEPTION -9
DUPL ICATESCH 19 EMPTYMARKN-DELETE -10
DUMP-..ERROR 20
BAD_.ENTSIZE 21
BAD..SCH KIND 22
PROC-.COEERROR 23
PROC-OUT -OFRANGE 24
NOJ'IATCH FOUND 25
DUPS...NOTREMOVED 26
INVALIDOELETE 27
BAD..ENTITYONUSERL 1ST 28
BAD.DELETE-KEY 29
EMPTY-MIODEL 30
ARG...UT OFRANGE 31
INVAL1DCRB POSITION 32
CRBENTRY J40TFOUND 33
INVALID -LAGAE 34
CANT-ARK..ENTITY-DELETE 35
S IZE-.NOT LARGE-ENOUGH 36
RTS...NTj.NWRKINGFORM 37
CORE...NOTAVA ILABLE 38
NOT..ENOUGHCOREFORIN IT 39

H-i

